Numerical study on dynamic mechanical properties of multi-jointed rock mass under impact loading using continuous-discrete coupling model

The multi-jointed rock mass (MJRM) in mining, tunnel and underground engineering is prone to fracture and destabilization under the disturbance of blasting-induced dynamic wave. Study on dynamic mechanical properties of the MJRM under impact loading contributes to improving the stability of rock mas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental earth sciences 2024-05, Vol.83 (10), p.309-309, Article 309
Hauptverfasser: Liu, Kangqi, Liu, Hongyan, Zhu, Fengjin, Zheng, Xiuhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 309
container_issue 10
container_start_page 309
container_title Environmental earth sciences
container_volume 83
creator Liu, Kangqi
Liu, Hongyan
Zhu, Fengjin
Zheng, Xiuhua
description The multi-jointed rock mass (MJRM) in mining, tunnel and underground engineering is prone to fracture and destabilization under the disturbance of blasting-induced dynamic wave. Study on dynamic mechanical properties of the MJRM under impact loading contributes to improving the stability of rock mass during engineering activities. A continuous-discrete coupling numerical model is developed to reproduce the laboratory Split Hopkinson Pressure Bar (SHPB) tests. The stress–strain relationship, crack types, joint penetration modes and energy dissipation characteristics of the MJRM at different joint inclination angles ( α ) are analyzed. Then the effects of the loading rate, number of joints, joint spacing ( d ) and joint stiffness on the dynamic peak strength and elastic modulus of the MJRM are discussed. It is revealed that the dynamic peak strength and elastic modulus of the MJRM are affected by the joint inclination angles, number of joints, joint spacing and joint stiffness, while the loading rate has little effect on the dynamic elastic modulus of the MJRM. The cracks generated at the joint tip do not appear to have enough time to expand under the impact loading. The main cause of the MJRM failure is the generation of the extensive micro-cracks that penetrate into each other and eventually connect with the joints to form the failure path.
doi_str_mv 10.1007/s12665-024-11632-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153661176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3052246839</sourcerecordid><originalsourceid>FETCH-LOGICAL-a326t-dd772796c8b470f548135e621cd6e78cb2e7705a8ca1458489600ae613c805523</originalsourceid><addsrcrecordid>eNp9kctuFDEQRVuISEQhP5CVJTZsDH60H71EES8pgg2sLceuSTy07caPxeQP-Ot4MggkFnhRtqrOLV3rTtMVJW8oIeptpUxKgQmbMaWSM_zwbDqnWkos2bI8__PW5MV0WeuejMMpX4g8n3596RFKcHZFtXV_QDkhf0g2BociuHubnmZbyRuUFqCivEOxry3gfQ6pgUclux8o2lpRTx4KCnGzrqE1Wx_SHer1WF1OLaSee8U-VFegwej1bT0OY_awvpzOdnatcPn7vpi-f3j_7foTvvn68fP1uxtsOZMNe68UU4t0-nZWZCdmTbkAyajzEpR2twyUIsJqZ-ks9KwXSYgFSbnTRAjGL6bXp73jTz871GbiMATrahMMe4ZTwaWkVMmBvvoH3ede0nBnOBGMzVLzZVDsRLmSay2wM1sJ0ZaDocQcAzKngMwIyDwFZB6GiJ9EdcDpDsrf1f9RPQKYkpWX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052246839</pqid></control><display><type>article</type><title>Numerical study on dynamic mechanical properties of multi-jointed rock mass under impact loading using continuous-discrete coupling model</title><source>Springer Nature - Complete Springer Journals</source><creator>Liu, Kangqi ; Liu, Hongyan ; Zhu, Fengjin ; Zheng, Xiuhua</creator><creatorcontrib>Liu, Kangqi ; Liu, Hongyan ; Zhu, Fengjin ; Zheng, Xiuhua</creatorcontrib><description>The multi-jointed rock mass (MJRM) in mining, tunnel and underground engineering is prone to fracture and destabilization under the disturbance of blasting-induced dynamic wave. Study on dynamic mechanical properties of the MJRM under impact loading contributes to improving the stability of rock mass during engineering activities. A continuous-discrete coupling numerical model is developed to reproduce the laboratory Split Hopkinson Pressure Bar (SHPB) tests. The stress–strain relationship, crack types, joint penetration modes and energy dissipation characteristics of the MJRM at different joint inclination angles ( α ) are analyzed. Then the effects of the loading rate, number of joints, joint spacing ( d ) and joint stiffness on the dynamic peak strength and elastic modulus of the MJRM are discussed. It is revealed that the dynamic peak strength and elastic modulus of the MJRM are affected by the joint inclination angles, number of joints, joint spacing and joint stiffness, while the loading rate has little effect on the dynamic elastic modulus of the MJRM. The cracks generated at the joint tip do not appear to have enough time to expand under the impact loading. The main cause of the MJRM failure is the generation of the extensive micro-cracks that penetrate into each other and eventually connect with the joints to form the failure path.</description><identifier>ISSN: 1866-6280</identifier><identifier>EISSN: 1866-6299</identifier><identifier>DOI: 10.1007/s12665-024-11632-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biogeosciences ; Blasting ; Coupling ; Cracks ; Destabilization ; Dynamic mechanical properties ; Earth and Environmental Science ; Earth Sciences ; energy ; Energy dissipation ; Energy exchange ; Environmental Science and Engineering ; Geochemistry ; Geology ; Hydrology/Water Resources ; Impact loads ; Inclination angle ; Jointed rock ; Load distribution ; Loading rate ; Mathematical models ; Mechanical properties ; Microcracks ; modulus of elasticity ; Numerical models ; Original Article ; Rock ; Rock masses ; Rocks ; Split Hopkinson pressure bars ; Stiffness ; Storage modulus ; Stress-strain relationships ; Terrestrial Pollution ; Underground mining</subject><ispartof>Environmental earth sciences, 2024-05, Vol.83 (10), p.309-309, Article 309</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a326t-dd772796c8b470f548135e621cd6e78cb2e7705a8ca1458489600ae613c805523</cites><orcidid>0000-0001-7163-0702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12665-024-11632-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12665-024-11632-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Kangqi</creatorcontrib><creatorcontrib>Liu, Hongyan</creatorcontrib><creatorcontrib>Zhu, Fengjin</creatorcontrib><creatorcontrib>Zheng, Xiuhua</creatorcontrib><title>Numerical study on dynamic mechanical properties of multi-jointed rock mass under impact loading using continuous-discrete coupling model</title><title>Environmental earth sciences</title><addtitle>Environ Earth Sci</addtitle><description>The multi-jointed rock mass (MJRM) in mining, tunnel and underground engineering is prone to fracture and destabilization under the disturbance of blasting-induced dynamic wave. Study on dynamic mechanical properties of the MJRM under impact loading contributes to improving the stability of rock mass during engineering activities. A continuous-discrete coupling numerical model is developed to reproduce the laboratory Split Hopkinson Pressure Bar (SHPB) tests. The stress–strain relationship, crack types, joint penetration modes and energy dissipation characteristics of the MJRM at different joint inclination angles ( α ) are analyzed. Then the effects of the loading rate, number of joints, joint spacing ( d ) and joint stiffness on the dynamic peak strength and elastic modulus of the MJRM are discussed. It is revealed that the dynamic peak strength and elastic modulus of the MJRM are affected by the joint inclination angles, number of joints, joint spacing and joint stiffness, while the loading rate has little effect on the dynamic elastic modulus of the MJRM. The cracks generated at the joint tip do not appear to have enough time to expand under the impact loading. The main cause of the MJRM failure is the generation of the extensive micro-cracks that penetrate into each other and eventually connect with the joints to form the failure path.</description><subject>Biogeosciences</subject><subject>Blasting</subject><subject>Coupling</subject><subject>Cracks</subject><subject>Destabilization</subject><subject>Dynamic mechanical properties</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>energy</subject><subject>Energy dissipation</subject><subject>Energy exchange</subject><subject>Environmental Science and Engineering</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Hydrology/Water Resources</subject><subject>Impact loads</subject><subject>Inclination angle</subject><subject>Jointed rock</subject><subject>Load distribution</subject><subject>Loading rate</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Microcracks</subject><subject>modulus of elasticity</subject><subject>Numerical models</subject><subject>Original Article</subject><subject>Rock</subject><subject>Rock masses</subject><subject>Rocks</subject><subject>Split Hopkinson pressure bars</subject><subject>Stiffness</subject><subject>Storage modulus</subject><subject>Stress-strain relationships</subject><subject>Terrestrial Pollution</subject><subject>Underground mining</subject><issn>1866-6280</issn><issn>1866-6299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kctuFDEQRVuISEQhP5CVJTZsDH60H71EES8pgg2sLceuSTy07caPxeQP-Ot4MggkFnhRtqrOLV3rTtMVJW8oIeptpUxKgQmbMaWSM_zwbDqnWkos2bI8__PW5MV0WeuejMMpX4g8n3596RFKcHZFtXV_QDkhf0g2BociuHubnmZbyRuUFqCivEOxry3gfQ6pgUclux8o2lpRTx4KCnGzrqE1Wx_SHer1WF1OLaSee8U-VFegwej1bT0OY_awvpzOdnatcPn7vpi-f3j_7foTvvn68fP1uxtsOZMNe68UU4t0-nZWZCdmTbkAyajzEpR2twyUIsJqZ-ks9KwXSYgFSbnTRAjGL6bXp73jTz871GbiMATrahMMe4ZTwaWkVMmBvvoH3ede0nBnOBGMzVLzZVDsRLmSay2wM1sJ0ZaDocQcAzKngMwIyDwFZB6GiJ9EdcDpDsrf1f9RPQKYkpWX</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Liu, Kangqi</creator><creator>Liu, Hongyan</creator><creator>Zhu, Fengjin</creator><creator>Zheng, Xiuhua</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-7163-0702</orcidid></search><sort><creationdate>20240501</creationdate><title>Numerical study on dynamic mechanical properties of multi-jointed rock mass under impact loading using continuous-discrete coupling model</title><author>Liu, Kangqi ; Liu, Hongyan ; Zhu, Fengjin ; Zheng, Xiuhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a326t-dd772796c8b470f548135e621cd6e78cb2e7705a8ca1458489600ae613c805523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biogeosciences</topic><topic>Blasting</topic><topic>Coupling</topic><topic>Cracks</topic><topic>Destabilization</topic><topic>Dynamic mechanical properties</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>energy</topic><topic>Energy dissipation</topic><topic>Energy exchange</topic><topic>Environmental Science and Engineering</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Hydrology/Water Resources</topic><topic>Impact loads</topic><topic>Inclination angle</topic><topic>Jointed rock</topic><topic>Load distribution</topic><topic>Loading rate</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Microcracks</topic><topic>modulus of elasticity</topic><topic>Numerical models</topic><topic>Original Article</topic><topic>Rock</topic><topic>Rock masses</topic><topic>Rocks</topic><topic>Split Hopkinson pressure bars</topic><topic>Stiffness</topic><topic>Storage modulus</topic><topic>Stress-strain relationships</topic><topic>Terrestrial Pollution</topic><topic>Underground mining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kangqi</creatorcontrib><creatorcontrib>Liu, Hongyan</creatorcontrib><creatorcontrib>Zhu, Fengjin</creatorcontrib><creatorcontrib>Zheng, Xiuhua</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kangqi</au><au>Liu, Hongyan</au><au>Zhu, Fengjin</au><au>Zheng, Xiuhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study on dynamic mechanical properties of multi-jointed rock mass under impact loading using continuous-discrete coupling model</atitle><jtitle>Environmental earth sciences</jtitle><stitle>Environ Earth Sci</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>83</volume><issue>10</issue><spage>309</spage><epage>309</epage><pages>309-309</pages><artnum>309</artnum><issn>1866-6280</issn><eissn>1866-6299</eissn><abstract>The multi-jointed rock mass (MJRM) in mining, tunnel and underground engineering is prone to fracture and destabilization under the disturbance of blasting-induced dynamic wave. Study on dynamic mechanical properties of the MJRM under impact loading contributes to improving the stability of rock mass during engineering activities. A continuous-discrete coupling numerical model is developed to reproduce the laboratory Split Hopkinson Pressure Bar (SHPB) tests. The stress–strain relationship, crack types, joint penetration modes and energy dissipation characteristics of the MJRM at different joint inclination angles ( α ) are analyzed. Then the effects of the loading rate, number of joints, joint spacing ( d ) and joint stiffness on the dynamic peak strength and elastic modulus of the MJRM are discussed. It is revealed that the dynamic peak strength and elastic modulus of the MJRM are affected by the joint inclination angles, number of joints, joint spacing and joint stiffness, while the loading rate has little effect on the dynamic elastic modulus of the MJRM. The cracks generated at the joint tip do not appear to have enough time to expand under the impact loading. The main cause of the MJRM failure is the generation of the extensive micro-cracks that penetrate into each other and eventually connect with the joints to form the failure path.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12665-024-11632-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7163-0702</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1866-6280
ispartof Environmental earth sciences, 2024-05, Vol.83 (10), p.309-309, Article 309
issn 1866-6280
1866-6299
language eng
recordid cdi_proquest_miscellaneous_3153661176
source Springer Nature - Complete Springer Journals
subjects Biogeosciences
Blasting
Coupling
Cracks
Destabilization
Dynamic mechanical properties
Earth and Environmental Science
Earth Sciences
energy
Energy dissipation
Energy exchange
Environmental Science and Engineering
Geochemistry
Geology
Hydrology/Water Resources
Impact loads
Inclination angle
Jointed rock
Load distribution
Loading rate
Mathematical models
Mechanical properties
Microcracks
modulus of elasticity
Numerical models
Original Article
Rock
Rock masses
Rocks
Split Hopkinson pressure bars
Stiffness
Storage modulus
Stress-strain relationships
Terrestrial Pollution
Underground mining
title Numerical study on dynamic mechanical properties of multi-jointed rock mass under impact loading using continuous-discrete coupling model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T18%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20on%20dynamic%20mechanical%20properties%20of%20multi-jointed%20rock%20mass%20under%20impact%20loading%20using%20continuous-discrete%20coupling%20model&rft.jtitle=Environmental%20earth%20sciences&rft.au=Liu,%20Kangqi&rft.date=2024-05-01&rft.volume=83&rft.issue=10&rft.spage=309&rft.epage=309&rft.pages=309-309&rft.artnum=309&rft.issn=1866-6280&rft.eissn=1866-6299&rft_id=info:doi/10.1007/s12665-024-11632-z&rft_dat=%3Cproquest_cross%3E3052246839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052246839&rft_id=info:pmid/&rfr_iscdi=true