Numerical study on dynamic mechanical properties of multi-jointed rock mass under impact loading using continuous-discrete coupling model
The multi-jointed rock mass (MJRM) in mining, tunnel and underground engineering is prone to fracture and destabilization under the disturbance of blasting-induced dynamic wave. Study on dynamic mechanical properties of the MJRM under impact loading contributes to improving the stability of rock mas...
Gespeichert in:
Veröffentlicht in: | Environmental earth sciences 2024-05, Vol.83 (10), p.309-309, Article 309 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 309 |
---|---|
container_issue | 10 |
container_start_page | 309 |
container_title | Environmental earth sciences |
container_volume | 83 |
creator | Liu, Kangqi Liu, Hongyan Zhu, Fengjin Zheng, Xiuhua |
description | The multi-jointed rock mass (MJRM) in mining, tunnel and underground engineering is prone to fracture and destabilization under the disturbance of blasting-induced dynamic wave. Study on dynamic mechanical properties of the MJRM under impact loading contributes to improving the stability of rock mass during engineering activities. A continuous-discrete coupling numerical model is developed to reproduce the laboratory Split Hopkinson Pressure Bar (SHPB) tests. The stress–strain relationship, crack types, joint penetration modes and energy dissipation characteristics of the MJRM at different joint inclination angles (
α
) are analyzed. Then the effects of the loading rate, number of joints, joint spacing (
d
) and joint stiffness on the dynamic peak strength and elastic modulus of the MJRM are discussed. It is revealed that the dynamic peak strength and elastic modulus of the MJRM are affected by the joint inclination angles, number of joints, joint spacing and joint stiffness, while the loading rate has little effect on the dynamic elastic modulus of the MJRM. The cracks generated at the joint tip do not appear to have enough time to expand under the impact loading. The main cause of the MJRM failure is the generation of the extensive micro-cracks that penetrate into each other and eventually connect with the joints to form the failure path. |
doi_str_mv | 10.1007/s12665-024-11632-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153661176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3052246839</sourcerecordid><originalsourceid>FETCH-LOGICAL-a326t-dd772796c8b470f548135e621cd6e78cb2e7705a8ca1458489600ae613c805523</originalsourceid><addsrcrecordid>eNp9kctuFDEQRVuISEQhP5CVJTZsDH60H71EES8pgg2sLceuSTy07caPxeQP-Ot4MggkFnhRtqrOLV3rTtMVJW8oIeptpUxKgQmbMaWSM_zwbDqnWkos2bI8__PW5MV0WeuejMMpX4g8n3596RFKcHZFtXV_QDkhf0g2BociuHubnmZbyRuUFqCivEOxry3gfQ6pgUclux8o2lpRTx4KCnGzrqE1Wx_SHer1WF1OLaSee8U-VFegwej1bT0OY_awvpzOdnatcPn7vpi-f3j_7foTvvn68fP1uxtsOZMNe68UU4t0-nZWZCdmTbkAyajzEpR2twyUIsJqZ-ks9KwXSYgFSbnTRAjGL6bXp73jTz871GbiMATrahMMe4ZTwaWkVMmBvvoH3ede0nBnOBGMzVLzZVDsRLmSay2wM1sJ0ZaDocQcAzKngMwIyDwFZB6GiJ9EdcDpDsrf1f9RPQKYkpWX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052246839</pqid></control><display><type>article</type><title>Numerical study on dynamic mechanical properties of multi-jointed rock mass under impact loading using continuous-discrete coupling model</title><source>Springer Nature - Complete Springer Journals</source><creator>Liu, Kangqi ; Liu, Hongyan ; Zhu, Fengjin ; Zheng, Xiuhua</creator><creatorcontrib>Liu, Kangqi ; Liu, Hongyan ; Zhu, Fengjin ; Zheng, Xiuhua</creatorcontrib><description>The multi-jointed rock mass (MJRM) in mining, tunnel and underground engineering is prone to fracture and destabilization under the disturbance of blasting-induced dynamic wave. Study on dynamic mechanical properties of the MJRM under impact loading contributes to improving the stability of rock mass during engineering activities. A continuous-discrete coupling numerical model is developed to reproduce the laboratory Split Hopkinson Pressure Bar (SHPB) tests. The stress–strain relationship, crack types, joint penetration modes and energy dissipation characteristics of the MJRM at different joint inclination angles (
α
) are analyzed. Then the effects of the loading rate, number of joints, joint spacing (
d
) and joint stiffness on the dynamic peak strength and elastic modulus of the MJRM are discussed. It is revealed that the dynamic peak strength and elastic modulus of the MJRM are affected by the joint inclination angles, number of joints, joint spacing and joint stiffness, while the loading rate has little effect on the dynamic elastic modulus of the MJRM. The cracks generated at the joint tip do not appear to have enough time to expand under the impact loading. The main cause of the MJRM failure is the generation of the extensive micro-cracks that penetrate into each other and eventually connect with the joints to form the failure path.</description><identifier>ISSN: 1866-6280</identifier><identifier>EISSN: 1866-6299</identifier><identifier>DOI: 10.1007/s12665-024-11632-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biogeosciences ; Blasting ; Coupling ; Cracks ; Destabilization ; Dynamic mechanical properties ; Earth and Environmental Science ; Earth Sciences ; energy ; Energy dissipation ; Energy exchange ; Environmental Science and Engineering ; Geochemistry ; Geology ; Hydrology/Water Resources ; Impact loads ; Inclination angle ; Jointed rock ; Load distribution ; Loading rate ; Mathematical models ; Mechanical properties ; Microcracks ; modulus of elasticity ; Numerical models ; Original Article ; Rock ; Rock masses ; Rocks ; Split Hopkinson pressure bars ; Stiffness ; Storage modulus ; Stress-strain relationships ; Terrestrial Pollution ; Underground mining</subject><ispartof>Environmental earth sciences, 2024-05, Vol.83 (10), p.309-309, Article 309</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a326t-dd772796c8b470f548135e621cd6e78cb2e7705a8ca1458489600ae613c805523</cites><orcidid>0000-0001-7163-0702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12665-024-11632-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12665-024-11632-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Kangqi</creatorcontrib><creatorcontrib>Liu, Hongyan</creatorcontrib><creatorcontrib>Zhu, Fengjin</creatorcontrib><creatorcontrib>Zheng, Xiuhua</creatorcontrib><title>Numerical study on dynamic mechanical properties of multi-jointed rock mass under impact loading using continuous-discrete coupling model</title><title>Environmental earth sciences</title><addtitle>Environ Earth Sci</addtitle><description>The multi-jointed rock mass (MJRM) in mining, tunnel and underground engineering is prone to fracture and destabilization under the disturbance of blasting-induced dynamic wave. Study on dynamic mechanical properties of the MJRM under impact loading contributes to improving the stability of rock mass during engineering activities. A continuous-discrete coupling numerical model is developed to reproduce the laboratory Split Hopkinson Pressure Bar (SHPB) tests. The stress–strain relationship, crack types, joint penetration modes and energy dissipation characteristics of the MJRM at different joint inclination angles (
α
) are analyzed. Then the effects of the loading rate, number of joints, joint spacing (
d
) and joint stiffness on the dynamic peak strength and elastic modulus of the MJRM are discussed. It is revealed that the dynamic peak strength and elastic modulus of the MJRM are affected by the joint inclination angles, number of joints, joint spacing and joint stiffness, while the loading rate has little effect on the dynamic elastic modulus of the MJRM. The cracks generated at the joint tip do not appear to have enough time to expand under the impact loading. The main cause of the MJRM failure is the generation of the extensive micro-cracks that penetrate into each other and eventually connect with the joints to form the failure path.</description><subject>Biogeosciences</subject><subject>Blasting</subject><subject>Coupling</subject><subject>Cracks</subject><subject>Destabilization</subject><subject>Dynamic mechanical properties</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>energy</subject><subject>Energy dissipation</subject><subject>Energy exchange</subject><subject>Environmental Science and Engineering</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Hydrology/Water Resources</subject><subject>Impact loads</subject><subject>Inclination angle</subject><subject>Jointed rock</subject><subject>Load distribution</subject><subject>Loading rate</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Microcracks</subject><subject>modulus of elasticity</subject><subject>Numerical models</subject><subject>Original Article</subject><subject>Rock</subject><subject>Rock masses</subject><subject>Rocks</subject><subject>Split Hopkinson pressure bars</subject><subject>Stiffness</subject><subject>Storage modulus</subject><subject>Stress-strain relationships</subject><subject>Terrestrial Pollution</subject><subject>Underground mining</subject><issn>1866-6280</issn><issn>1866-6299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kctuFDEQRVuISEQhP5CVJTZsDH60H71EES8pgg2sLceuSTy07caPxeQP-Ot4MggkFnhRtqrOLV3rTtMVJW8oIeptpUxKgQmbMaWSM_zwbDqnWkos2bI8__PW5MV0WeuejMMpX4g8n3596RFKcHZFtXV_QDkhf0g2BociuHubnmZbyRuUFqCivEOxry3gfQ6pgUclux8o2lpRTx4KCnGzrqE1Wx_SHer1WF1OLaSee8U-VFegwej1bT0OY_awvpzOdnatcPn7vpi-f3j_7foTvvn68fP1uxtsOZMNe68UU4t0-nZWZCdmTbkAyajzEpR2twyUIsJqZ-ks9KwXSYgFSbnTRAjGL6bXp73jTz871GbiMATrahMMe4ZTwaWkVMmBvvoH3ede0nBnOBGMzVLzZVDsRLmSay2wM1sJ0ZaDocQcAzKngMwIyDwFZB6GiJ9EdcDpDsrf1f9RPQKYkpWX</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Liu, Kangqi</creator><creator>Liu, Hongyan</creator><creator>Zhu, Fengjin</creator><creator>Zheng, Xiuhua</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-7163-0702</orcidid></search><sort><creationdate>20240501</creationdate><title>Numerical study on dynamic mechanical properties of multi-jointed rock mass under impact loading using continuous-discrete coupling model</title><author>Liu, Kangqi ; Liu, Hongyan ; Zhu, Fengjin ; Zheng, Xiuhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a326t-dd772796c8b470f548135e621cd6e78cb2e7705a8ca1458489600ae613c805523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biogeosciences</topic><topic>Blasting</topic><topic>Coupling</topic><topic>Cracks</topic><topic>Destabilization</topic><topic>Dynamic mechanical properties</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>energy</topic><topic>Energy dissipation</topic><topic>Energy exchange</topic><topic>Environmental Science and Engineering</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Hydrology/Water Resources</topic><topic>Impact loads</topic><topic>Inclination angle</topic><topic>Jointed rock</topic><topic>Load distribution</topic><topic>Loading rate</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Microcracks</topic><topic>modulus of elasticity</topic><topic>Numerical models</topic><topic>Original Article</topic><topic>Rock</topic><topic>Rock masses</topic><topic>Rocks</topic><topic>Split Hopkinson pressure bars</topic><topic>Stiffness</topic><topic>Storage modulus</topic><topic>Stress-strain relationships</topic><topic>Terrestrial Pollution</topic><topic>Underground mining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kangqi</creatorcontrib><creatorcontrib>Liu, Hongyan</creatorcontrib><creatorcontrib>Zhu, Fengjin</creatorcontrib><creatorcontrib>Zheng, Xiuhua</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kangqi</au><au>Liu, Hongyan</au><au>Zhu, Fengjin</au><au>Zheng, Xiuhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study on dynamic mechanical properties of multi-jointed rock mass under impact loading using continuous-discrete coupling model</atitle><jtitle>Environmental earth sciences</jtitle><stitle>Environ Earth Sci</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>83</volume><issue>10</issue><spage>309</spage><epage>309</epage><pages>309-309</pages><artnum>309</artnum><issn>1866-6280</issn><eissn>1866-6299</eissn><abstract>The multi-jointed rock mass (MJRM) in mining, tunnel and underground engineering is prone to fracture and destabilization under the disturbance of blasting-induced dynamic wave. Study on dynamic mechanical properties of the MJRM under impact loading contributes to improving the stability of rock mass during engineering activities. A continuous-discrete coupling numerical model is developed to reproduce the laboratory Split Hopkinson Pressure Bar (SHPB) tests. The stress–strain relationship, crack types, joint penetration modes and energy dissipation characteristics of the MJRM at different joint inclination angles (
α
) are analyzed. Then the effects of the loading rate, number of joints, joint spacing (
d
) and joint stiffness on the dynamic peak strength and elastic modulus of the MJRM are discussed. It is revealed that the dynamic peak strength and elastic modulus of the MJRM are affected by the joint inclination angles, number of joints, joint spacing and joint stiffness, while the loading rate has little effect on the dynamic elastic modulus of the MJRM. The cracks generated at the joint tip do not appear to have enough time to expand under the impact loading. The main cause of the MJRM failure is the generation of the extensive micro-cracks that penetrate into each other and eventually connect with the joints to form the failure path.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12665-024-11632-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7163-0702</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1866-6280 |
ispartof | Environmental earth sciences, 2024-05, Vol.83 (10), p.309-309, Article 309 |
issn | 1866-6280 1866-6299 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153661176 |
source | Springer Nature - Complete Springer Journals |
subjects | Biogeosciences Blasting Coupling Cracks Destabilization Dynamic mechanical properties Earth and Environmental Science Earth Sciences energy Energy dissipation Energy exchange Environmental Science and Engineering Geochemistry Geology Hydrology/Water Resources Impact loads Inclination angle Jointed rock Load distribution Loading rate Mathematical models Mechanical properties Microcracks modulus of elasticity Numerical models Original Article Rock Rock masses Rocks Split Hopkinson pressure bars Stiffness Storage modulus Stress-strain relationships Terrestrial Pollution Underground mining |
title | Numerical study on dynamic mechanical properties of multi-jointed rock mass under impact loading using continuous-discrete coupling model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T18%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20on%20dynamic%20mechanical%20properties%20of%20multi-jointed%20rock%20mass%20under%20impact%20loading%20using%20continuous-discrete%20coupling%20model&rft.jtitle=Environmental%20earth%20sciences&rft.au=Liu,%20Kangqi&rft.date=2024-05-01&rft.volume=83&rft.issue=10&rft.spage=309&rft.epage=309&rft.pages=309-309&rft.artnum=309&rft.issn=1866-6280&rft.eissn=1866-6299&rft_id=info:doi/10.1007/s12665-024-11632-z&rft_dat=%3Cproquest_cross%3E3052246839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052246839&rft_id=info:pmid/&rfr_iscdi=true |