Integrating remote sensing and machine learning to detect turbidity anomalies in hydroelectric reservoirs

Monitoring water quality in reservoirs is essential for the maintenance of aquatic ecosystems and socioeconomic services. In this scenario, the observation of abrupt elevations of physicochemical parameters, such as turbidity and other indicators, can signal anomalies associated with the occurrence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2023-12, Vol.902, p.165964-165964, Article 165964
Hauptverfasser: Souza, Anderson P., Oliveira, Bruno A., Andrade, Mauren L., Starling, Maria Clara V.M., Pereira, Alexandre H., Maillard, Philippe, Nogueira, Keiller, dos Santos, Jefersson A., Amorim, Camila C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 165964
container_issue
container_start_page 165964
container_title The Science of the total environment
container_volume 902
creator Souza, Anderson P.
Oliveira, Bruno A.
Andrade, Mauren L.
Starling, Maria Clara V.M.
Pereira, Alexandre H.
Maillard, Philippe
Nogueira, Keiller
dos Santos, Jefersson A.
Amorim, Camila C.
description Monitoring water quality in reservoirs is essential for the maintenance of aquatic ecosystems and socioeconomic services. In this scenario, the observation of abrupt elevations of physicochemical parameters, such as turbidity and other indicators, can signal anomalies associated with the occurrence of critical events, requiring operational actions and planning to mitigate negative environmental impacts on water resources. This work aims to integrate Machine Learning methods specialized in anomaly detection with data obtained from remote sensing images to identify with high turbidity events in the surface water of the Três Marias Hydroelectric Reservoir. Four distinct threshold-based scenarios were evaluated, in which the overall performance, based on F1-score, showed decreasing trends as the thresholds became more restrictive. In general, the anomaly identification maps generated through the models ratified the applicability of the methods in the diagnosis of surface water in reservoirs in distinct hydrological contexts (dry and wet), effectively identifying locations with anomalous turbidity values. [Display omitted] •Detection of turbidity anomalies in surface water with optimized performance metrics•Evaluation of four turbidity scenarios (25, 14, 10, and 6 NTU) for the detection of anomalies•Extraction of remote sensing data for training of Machine Learning models through Google Earth Engine services•Turbidity anomaly maps produced for different hydrological contexts (dry and wet seasons)
doi_str_mv 10.1016/j.scitotenv.2023.165964
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153658401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969723045898</els_id><sourcerecordid>2846926673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-b08a573a6f2b58e15e873188e1c608cd4ee61b608f4cdab4b8e6ffbd949d30773</originalsourceid><addsrcrecordid>eNqFkU1PJCEQhslGo7PqX1j76KVHaD77aIzumph42T0TGqqVSTcoMJPMv5fOzHqVCwV56q2kHoSuCV4TTMTtZp2tL7FA2K073NE1EbwX7AdaESX7luBOnKAVxky1vejlOfqZ8wbXIxU5Q-dUckY45ivkn0KB12SKD69NgrlGNhlCXp4muGY29s0HaCYwKSyfJTYOCtjSlG0avPNlX8E4m8lDbnxo3vYuRZgqkbytkRnSLvqUL9HpaKYMV8f7Av17fPh7_6d9fvn9dH_33FqGWWkHrAyX1IixG7gCwkFJSlStrMDKOgYgyFDLkVlnBjYoEOM4uJ71jmIp6QW6OeS-p_ixhVz07LOFaTIB4jZrSjgVXDFMvkU7xUTfCSFpReUBtSnmnGDU78nPJu01wXpRojf6S4lelOiDktr56zhkO8zgvvr-O6jA3QGAupWdh7QEQbDgfKpb1C76b4d8Au37o_E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2846926673</pqid></control><display><type>article</type><title>Integrating remote sensing and machine learning to detect turbidity anomalies in hydroelectric reservoirs</title><source>Elsevier ScienceDirect Journals</source><creator>Souza, Anderson P. ; Oliveira, Bruno A. ; Andrade, Mauren L. ; Starling, Maria Clara V.M. ; Pereira, Alexandre H. ; Maillard, Philippe ; Nogueira, Keiller ; dos Santos, Jefersson A. ; Amorim, Camila C.</creator><creatorcontrib>Souza, Anderson P. ; Oliveira, Bruno A. ; Andrade, Mauren L. ; Starling, Maria Clara V.M. ; Pereira, Alexandre H. ; Maillard, Philippe ; Nogueira, Keiller ; dos Santos, Jefersson A. ; Amorim, Camila C.</creatorcontrib><description>Monitoring water quality in reservoirs is essential for the maintenance of aquatic ecosystems and socioeconomic services. In this scenario, the observation of abrupt elevations of physicochemical parameters, such as turbidity and other indicators, can signal anomalies associated with the occurrence of critical events, requiring operational actions and planning to mitigate negative environmental impacts on water resources. This work aims to integrate Machine Learning methods specialized in anomaly detection with data obtained from remote sensing images to identify with high turbidity events in the surface water of the Três Marias Hydroelectric Reservoir. Four distinct threshold-based scenarios were evaluated, in which the overall performance, based on F1-score, showed decreasing trends as the thresholds became more restrictive. In general, the anomaly identification maps generated through the models ratified the applicability of the methods in the diagnosis of surface water in reservoirs in distinct hydrological contexts (dry and wet), effectively identifying locations with anomalous turbidity values. [Display omitted] •Detection of turbidity anomalies in surface water with optimized performance metrics•Evaluation of four turbidity scenarios (25, 14, 10, and 6 NTU) for the detection of anomalies•Extraction of remote sensing data for training of Machine Learning models through Google Earth Engine services•Turbidity anomaly maps produced for different hydrological contexts (dry and wet seasons)</description><identifier>ISSN: 0048-9697</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2023.165964</identifier><identifier>PMID: 37541505</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Anomaly detection ; environment ; Monitoring ; Satellite images ; surface water ; turbidity ; Water quality</subject><ispartof>The Science of the total environment, 2023-12, Vol.902, p.165964-165964, Article 165964</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-b08a573a6f2b58e15e873188e1c608cd4ee61b608f4cdab4b8e6ffbd949d30773</citedby><cites>FETCH-LOGICAL-c404t-b08a573a6f2b58e15e873188e1c608cd4ee61b608f4cdab4b8e6ffbd949d30773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0048969723045898$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37541505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Souza, Anderson P.</creatorcontrib><creatorcontrib>Oliveira, Bruno A.</creatorcontrib><creatorcontrib>Andrade, Mauren L.</creatorcontrib><creatorcontrib>Starling, Maria Clara V.M.</creatorcontrib><creatorcontrib>Pereira, Alexandre H.</creatorcontrib><creatorcontrib>Maillard, Philippe</creatorcontrib><creatorcontrib>Nogueira, Keiller</creatorcontrib><creatorcontrib>dos Santos, Jefersson A.</creatorcontrib><creatorcontrib>Amorim, Camila C.</creatorcontrib><title>Integrating remote sensing and machine learning to detect turbidity anomalies in hydroelectric reservoirs</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>Monitoring water quality in reservoirs is essential for the maintenance of aquatic ecosystems and socioeconomic services. In this scenario, the observation of abrupt elevations of physicochemical parameters, such as turbidity and other indicators, can signal anomalies associated with the occurrence of critical events, requiring operational actions and planning to mitigate negative environmental impacts on water resources. This work aims to integrate Machine Learning methods specialized in anomaly detection with data obtained from remote sensing images to identify with high turbidity events in the surface water of the Três Marias Hydroelectric Reservoir. Four distinct threshold-based scenarios were evaluated, in which the overall performance, based on F1-score, showed decreasing trends as the thresholds became more restrictive. In general, the anomaly identification maps generated through the models ratified the applicability of the methods in the diagnosis of surface water in reservoirs in distinct hydrological contexts (dry and wet), effectively identifying locations with anomalous turbidity values. [Display omitted] •Detection of turbidity anomalies in surface water with optimized performance metrics•Evaluation of four turbidity scenarios (25, 14, 10, and 6 NTU) for the detection of anomalies•Extraction of remote sensing data for training of Machine Learning models through Google Earth Engine services•Turbidity anomaly maps produced for different hydrological contexts (dry and wet seasons)</description><subject>Anomaly detection</subject><subject>environment</subject><subject>Monitoring</subject><subject>Satellite images</subject><subject>surface water</subject><subject>turbidity</subject><subject>Water quality</subject><issn>0048-9697</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkU1PJCEQhslGo7PqX1j76KVHaD77aIzumph42T0TGqqVSTcoMJPMv5fOzHqVCwV56q2kHoSuCV4TTMTtZp2tL7FA2K073NE1EbwX7AdaESX7luBOnKAVxky1vejlOfqZ8wbXIxU5Q-dUckY45ivkn0KB12SKD69NgrlGNhlCXp4muGY29s0HaCYwKSyfJTYOCtjSlG0avPNlX8E4m8lDbnxo3vYuRZgqkbytkRnSLvqUL9HpaKYMV8f7Av17fPh7_6d9fvn9dH_33FqGWWkHrAyX1IixG7gCwkFJSlStrMDKOgYgyFDLkVlnBjYoEOM4uJ71jmIp6QW6OeS-p_ixhVz07LOFaTIB4jZrSjgVXDFMvkU7xUTfCSFpReUBtSnmnGDU78nPJu01wXpRojf6S4lelOiDktr56zhkO8zgvvr-O6jA3QGAupWdh7QEQbDgfKpb1C76b4d8Au37o_E</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Souza, Anderson P.</creator><creator>Oliveira, Bruno A.</creator><creator>Andrade, Mauren L.</creator><creator>Starling, Maria Clara V.M.</creator><creator>Pereira, Alexandre H.</creator><creator>Maillard, Philippe</creator><creator>Nogueira, Keiller</creator><creator>dos Santos, Jefersson A.</creator><creator>Amorim, Camila C.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20231201</creationdate><title>Integrating remote sensing and machine learning to detect turbidity anomalies in hydroelectric reservoirs</title><author>Souza, Anderson P. ; Oliveira, Bruno A. ; Andrade, Mauren L. ; Starling, Maria Clara V.M. ; Pereira, Alexandre H. ; Maillard, Philippe ; Nogueira, Keiller ; dos Santos, Jefersson A. ; Amorim, Camila C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-b08a573a6f2b58e15e873188e1c608cd4ee61b608f4cdab4b8e6ffbd949d30773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomaly detection</topic><topic>environment</topic><topic>Monitoring</topic><topic>Satellite images</topic><topic>surface water</topic><topic>turbidity</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Souza, Anderson P.</creatorcontrib><creatorcontrib>Oliveira, Bruno A.</creatorcontrib><creatorcontrib>Andrade, Mauren L.</creatorcontrib><creatorcontrib>Starling, Maria Clara V.M.</creatorcontrib><creatorcontrib>Pereira, Alexandre H.</creatorcontrib><creatorcontrib>Maillard, Philippe</creatorcontrib><creatorcontrib>Nogueira, Keiller</creatorcontrib><creatorcontrib>dos Santos, Jefersson A.</creatorcontrib><creatorcontrib>Amorim, Camila C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Souza, Anderson P.</au><au>Oliveira, Bruno A.</au><au>Andrade, Mauren L.</au><au>Starling, Maria Clara V.M.</au><au>Pereira, Alexandre H.</au><au>Maillard, Philippe</au><au>Nogueira, Keiller</au><au>dos Santos, Jefersson A.</au><au>Amorim, Camila C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating remote sensing and machine learning to detect turbidity anomalies in hydroelectric reservoirs</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>902</volume><spage>165964</spage><epage>165964</epage><pages>165964-165964</pages><artnum>165964</artnum><issn>0048-9697</issn><eissn>1879-1026</eissn><abstract>Monitoring water quality in reservoirs is essential for the maintenance of aquatic ecosystems and socioeconomic services. In this scenario, the observation of abrupt elevations of physicochemical parameters, such as turbidity and other indicators, can signal anomalies associated with the occurrence of critical events, requiring operational actions and planning to mitigate negative environmental impacts on water resources. This work aims to integrate Machine Learning methods specialized in anomaly detection with data obtained from remote sensing images to identify with high turbidity events in the surface water of the Três Marias Hydroelectric Reservoir. Four distinct threshold-based scenarios were evaluated, in which the overall performance, based on F1-score, showed decreasing trends as the thresholds became more restrictive. In general, the anomaly identification maps generated through the models ratified the applicability of the methods in the diagnosis of surface water in reservoirs in distinct hydrological contexts (dry and wet), effectively identifying locations with anomalous turbidity values. [Display omitted] •Detection of turbidity anomalies in surface water with optimized performance metrics•Evaluation of four turbidity scenarios (25, 14, 10, and 6 NTU) for the detection of anomalies•Extraction of remote sensing data for training of Machine Learning models through Google Earth Engine services•Turbidity anomaly maps produced for different hydrological contexts (dry and wet seasons)</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37541505</pmid><doi>10.1016/j.scitotenv.2023.165964</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0048-9697
ispartof The Science of the total environment, 2023-12, Vol.902, p.165964-165964, Article 165964
issn 0048-9697
1879-1026
language eng
recordid cdi_proquest_miscellaneous_3153658401
source Elsevier ScienceDirect Journals
subjects Anomaly detection
environment
Monitoring
Satellite images
surface water
turbidity
Water quality
title Integrating remote sensing and machine learning to detect turbidity anomalies in hydroelectric reservoirs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A41%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20remote%20sensing%20and%20machine%20learning%20to%20detect%20turbidity%20anomalies%20in%20hydroelectric%20reservoirs&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Souza,%20Anderson%20P.&rft.date=2023-12-01&rft.volume=902&rft.spage=165964&rft.epage=165964&rft.pages=165964-165964&rft.artnum=165964&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2023.165964&rft_dat=%3Cproquest_cross%3E2846926673%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2846926673&rft_id=info:pmid/37541505&rft_els_id=S0048969723045898&rfr_iscdi=true