Rethinking the Roughness Height: An Improved Description of Temperature Profiles over Short Vegetation
In this study, we present an extension to the Monin–Obukov similarity theory (MOST) for the roughness sublayer (RSL) over short vegetation. We test our theory using temperature measurements from fiber optic cables in an array-shaped set-up. This provides a high vertical measurement resolution that e...
Gespeichert in:
Veröffentlicht in: | Boundary-layer meteorology 2024-07, Vol.190 (7), p.31-31, Article 31 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31 |
---|---|
container_issue | 7 |
container_start_page | 31 |
container_title | Boundary-layer meteorology |
container_volume | 190 |
creator | Boekee, Judith van der Linden, Steven J. A. ten Veldhuis, Marie-Claire Verouden, Iris E. A. Nollen, Paul J. Dai, Yi Jongen, Harro J. van de Wiel, Bas J. H. |
description | In this study, we present an extension to the Monin–Obukov similarity theory (MOST) for the roughness sublayer (RSL) over short vegetation. We test our theory using temperature measurements from fiber optic cables in an array-shaped set-up. This provides a high vertical measurement resolution that enables us to measure the sharp temperature gradients near the surface. It is well-known that MOST is invalid in the RSL as the flow is distorted by roughness elements. However, to derive the surface temperature, it is common practice to extrapolate the logarithmic profiles down to the surface through the RSL. Instead of logarithmic behaviour defined by MOST near the surface, our observations show near-linear temperature profiles. This log-to-linear transition is described over an aerodynamically smooth surface by the Van Driest equation in classical turbulence literature. Here we propose that the Van Driest equation can also be used to describe this transition over a rough surface, by replacing the viscous length scale with a surface length scale
L
s
that represents the size of the smallest eddies near the grass structures. We show that
L
s
scales with the geometry of the vegetation and that the model shows the potential to be scaled up to tall canopies. The adapted Van Driest model outperforms the roughness length concept in describing the temperature profiles near the surface and predicting the surface temperature. |
doi_str_mv | 10.1007/s10546-024-00871-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153655721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153655721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-c5b814132c92acfba77509d8f6f9ed498f086295a2a436c22ce5a7a83cd376573</originalsourceid><addsrcrecordid>eNp9kE1PGzEQhq0KpAboH-jJEhcuS8df611uCFqIhASCtFfLcca7G5J1anuRyq-vaSpV4tDTaKTnfTXzEPKZwTkD0F8SAyXrCrisABrNqtcPZMaUFhWTmh-QGQDUVSOY_EiOUlqXVTMFM-IfMffD-DyMHc090scwdf2IKdFbHLo-X9DLkc63uxhecEWvMbk47PIQRho8XeB2h9HmKSJ9iMEPG0y0gJE-9SFm-gM7zPaNPiGH3m4Sfvo7j8n3b18XV7fV3f3N_OryrnJC6lw5tWyYZIK7llvnl1ZrBe2q8bVvcSXbxkNT81ZZbqWoHecOldW2EW4ldF3ePSZn-95y8M8JUzbbITncbOyIYUpGMCVqpTRnBT19h67DFMdynRGgoWUStCoU31MuhpQierOLw9bGX4aBeVNv9upNUW_-qDevJST2oVTgscP4r_o_qd92JId7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070914075</pqid></control><display><type>article</type><title>Rethinking the Roughness Height: An Improved Description of Temperature Profiles over Short Vegetation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Boekee, Judith ; van der Linden, Steven J. A. ; ten Veldhuis, Marie-Claire ; Verouden, Iris E. A. ; Nollen, Paul J. ; Dai, Yi ; Jongen, Harro J. ; van de Wiel, Bas J. H.</creator><creatorcontrib>Boekee, Judith ; van der Linden, Steven J. A. ; ten Veldhuis, Marie-Claire ; Verouden, Iris E. A. ; Nollen, Paul J. ; Dai, Yi ; Jongen, Harro J. ; van de Wiel, Bas J. H.</creatorcontrib><description>In this study, we present an extension to the Monin–Obukov similarity theory (MOST) for the roughness sublayer (RSL) over short vegetation. We test our theory using temperature measurements from fiber optic cables in an array-shaped set-up. This provides a high vertical measurement resolution that enables us to measure the sharp temperature gradients near the surface. It is well-known that MOST is invalid in the RSL as the flow is distorted by roughness elements. However, to derive the surface temperature, it is common practice to extrapolate the logarithmic profiles down to the surface through the RSL. Instead of logarithmic behaviour defined by MOST near the surface, our observations show near-linear temperature profiles. This log-to-linear transition is described over an aerodynamically smooth surface by the Van Driest equation in classical turbulence literature. Here we propose that the Van Driest equation can also be used to describe this transition over a rough surface, by replacing the viscous length scale with a surface length scale
L
s
that represents the size of the smallest eddies near the grass structures. We show that
L
s
scales with the geometry of the vegetation and that the model shows the potential to be scaled up to tall canopies. The adapted Van Driest model outperforms the roughness length concept in describing the temperature profiles near the surface and predicting the surface temperature.</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1007/s10546-024-00871-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Cables ; Earth and Environmental Science ; Earth Sciences ; Eddies ; equations ; Fiber optics ; geometry ; grasses ; Logarithms ; Meteorology ; Optical fibres ; Research Article ; Roughness ; Roughness length ; Similarity theory ; Surface temperature ; Temperature gradients ; Temperature measurement ; Temperature profile ; Temperature profiles ; Turbulence ; turbulent flow ; Vegetation</subject><ispartof>Boundary-layer meteorology, 2024-07, Vol.190 (7), p.31-31, Article 31</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c347t-c5b814132c92acfba77509d8f6f9ed498f086295a2a436c22ce5a7a83cd376573</cites><orcidid>0000-0001-9572-2193 ; 0000-0002-7538-4796 ; 0000-0002-9480-1225 ; 0000-0001-9150-0892 ; 0000-0002-1861-2596 ; 0000-0001-9166-4918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10546-024-00871-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10546-024-00871-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Boekee, Judith</creatorcontrib><creatorcontrib>van der Linden, Steven J. A.</creatorcontrib><creatorcontrib>ten Veldhuis, Marie-Claire</creatorcontrib><creatorcontrib>Verouden, Iris E. A.</creatorcontrib><creatorcontrib>Nollen, Paul J.</creatorcontrib><creatorcontrib>Dai, Yi</creatorcontrib><creatorcontrib>Jongen, Harro J.</creatorcontrib><creatorcontrib>van de Wiel, Bas J. H.</creatorcontrib><title>Rethinking the Roughness Height: An Improved Description of Temperature Profiles over Short Vegetation</title><title>Boundary-layer meteorology</title><addtitle>Boundary-Layer Meteorol</addtitle><description>In this study, we present an extension to the Monin–Obukov similarity theory (MOST) for the roughness sublayer (RSL) over short vegetation. We test our theory using temperature measurements from fiber optic cables in an array-shaped set-up. This provides a high vertical measurement resolution that enables us to measure the sharp temperature gradients near the surface. It is well-known that MOST is invalid in the RSL as the flow is distorted by roughness elements. However, to derive the surface temperature, it is common practice to extrapolate the logarithmic profiles down to the surface through the RSL. Instead of logarithmic behaviour defined by MOST near the surface, our observations show near-linear temperature profiles. This log-to-linear transition is described over an aerodynamically smooth surface by the Van Driest equation in classical turbulence literature. Here we propose that the Van Driest equation can also be used to describe this transition over a rough surface, by replacing the viscous length scale with a surface length scale
L
s
that represents the size of the smallest eddies near the grass structures. We show that
L
s
scales with the geometry of the vegetation and that the model shows the potential to be scaled up to tall canopies. The adapted Van Driest model outperforms the roughness length concept in describing the temperature profiles near the surface and predicting the surface temperature.</description><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Cables</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Eddies</subject><subject>equations</subject><subject>Fiber optics</subject><subject>geometry</subject><subject>grasses</subject><subject>Logarithms</subject><subject>Meteorology</subject><subject>Optical fibres</subject><subject>Research Article</subject><subject>Roughness</subject><subject>Roughness length</subject><subject>Similarity theory</subject><subject>Surface temperature</subject><subject>Temperature gradients</subject><subject>Temperature measurement</subject><subject>Temperature profile</subject><subject>Temperature profiles</subject><subject>Turbulence</subject><subject>turbulent flow</subject><subject>Vegetation</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1PGzEQhq0KpAboH-jJEhcuS8df611uCFqIhASCtFfLcca7G5J1anuRyq-vaSpV4tDTaKTnfTXzEPKZwTkD0F8SAyXrCrisABrNqtcPZMaUFhWTmh-QGQDUVSOY_EiOUlqXVTMFM-IfMffD-DyMHc090scwdf2IKdFbHLo-X9DLkc63uxhecEWvMbk47PIQRho8XeB2h9HmKSJ9iMEPG0y0gJE-9SFm-gM7zPaNPiGH3m4Sfvo7j8n3b18XV7fV3f3N_OryrnJC6lw5tWyYZIK7llvnl1ZrBe2q8bVvcSXbxkNT81ZZbqWoHecOldW2EW4ldF3ePSZn-95y8M8JUzbbITncbOyIYUpGMCVqpTRnBT19h67DFMdynRGgoWUStCoU31MuhpQierOLw9bGX4aBeVNv9upNUW_-qDevJST2oVTgscP4r_o_qd92JId7</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Boekee, Judith</creator><creator>van der Linden, Steven J. A.</creator><creator>ten Veldhuis, Marie-Claire</creator><creator>Verouden, Iris E. A.</creator><creator>Nollen, Paul J.</creator><creator>Dai, Yi</creator><creator>Jongen, Harro J.</creator><creator>van de Wiel, Bas J. H.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9572-2193</orcidid><orcidid>https://orcid.org/0000-0002-7538-4796</orcidid><orcidid>https://orcid.org/0000-0002-9480-1225</orcidid><orcidid>https://orcid.org/0000-0001-9150-0892</orcidid><orcidid>https://orcid.org/0000-0002-1861-2596</orcidid><orcidid>https://orcid.org/0000-0001-9166-4918</orcidid></search><sort><creationdate>20240701</creationdate><title>Rethinking the Roughness Height: An Improved Description of Temperature Profiles over Short Vegetation</title><author>Boekee, Judith ; van der Linden, Steven J. A. ; ten Veldhuis, Marie-Claire ; Verouden, Iris E. A. ; Nollen, Paul J. ; Dai, Yi ; Jongen, Harro J. ; van de Wiel, Bas J. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-c5b814132c92acfba77509d8f6f9ed498f086295a2a436c22ce5a7a83cd376573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Cables</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Eddies</topic><topic>equations</topic><topic>Fiber optics</topic><topic>geometry</topic><topic>grasses</topic><topic>Logarithms</topic><topic>Meteorology</topic><topic>Optical fibres</topic><topic>Research Article</topic><topic>Roughness</topic><topic>Roughness length</topic><topic>Similarity theory</topic><topic>Surface temperature</topic><topic>Temperature gradients</topic><topic>Temperature measurement</topic><topic>Temperature profile</topic><topic>Temperature profiles</topic><topic>Turbulence</topic><topic>turbulent flow</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boekee, Judith</creatorcontrib><creatorcontrib>van der Linden, Steven J. A.</creatorcontrib><creatorcontrib>ten Veldhuis, Marie-Claire</creatorcontrib><creatorcontrib>Verouden, Iris E. A.</creatorcontrib><creatorcontrib>Nollen, Paul J.</creatorcontrib><creatorcontrib>Dai, Yi</creatorcontrib><creatorcontrib>Jongen, Harro J.</creatorcontrib><creatorcontrib>van de Wiel, Bas J. H.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boekee, Judith</au><au>van der Linden, Steven J. A.</au><au>ten Veldhuis, Marie-Claire</au><au>Verouden, Iris E. A.</au><au>Nollen, Paul J.</au><au>Dai, Yi</au><au>Jongen, Harro J.</au><au>van de Wiel, Bas J. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rethinking the Roughness Height: An Improved Description of Temperature Profiles over Short Vegetation</atitle><jtitle>Boundary-layer meteorology</jtitle><stitle>Boundary-Layer Meteorol</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>190</volume><issue>7</issue><spage>31</spage><epage>31</epage><pages>31-31</pages><artnum>31</artnum><issn>0006-8314</issn><eissn>1573-1472</eissn><abstract>In this study, we present an extension to the Monin–Obukov similarity theory (MOST) for the roughness sublayer (RSL) over short vegetation. We test our theory using temperature measurements from fiber optic cables in an array-shaped set-up. This provides a high vertical measurement resolution that enables us to measure the sharp temperature gradients near the surface. It is well-known that MOST is invalid in the RSL as the flow is distorted by roughness elements. However, to derive the surface temperature, it is common practice to extrapolate the logarithmic profiles down to the surface through the RSL. Instead of logarithmic behaviour defined by MOST near the surface, our observations show near-linear temperature profiles. This log-to-linear transition is described over an aerodynamically smooth surface by the Van Driest equation in classical turbulence literature. Here we propose that the Van Driest equation can also be used to describe this transition over a rough surface, by replacing the viscous length scale with a surface length scale
L
s
that represents the size of the smallest eddies near the grass structures. We show that
L
s
scales with the geometry of the vegetation and that the model shows the potential to be scaled up to tall canopies. The adapted Van Driest model outperforms the roughness length concept in describing the temperature profiles near the surface and predicting the surface temperature.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10546-024-00871-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9572-2193</orcidid><orcidid>https://orcid.org/0000-0002-7538-4796</orcidid><orcidid>https://orcid.org/0000-0002-9480-1225</orcidid><orcidid>https://orcid.org/0000-0001-9150-0892</orcidid><orcidid>https://orcid.org/0000-0002-1861-2596</orcidid><orcidid>https://orcid.org/0000-0001-9166-4918</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8314 |
ispartof | Boundary-layer meteorology, 2024-07, Vol.190 (7), p.31-31, Article 31 |
issn | 0006-8314 1573-1472 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153655721 |
source | SpringerLink Journals - AutoHoldings |
subjects | Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Cables Earth and Environmental Science Earth Sciences Eddies equations Fiber optics geometry grasses Logarithms Meteorology Optical fibres Research Article Roughness Roughness length Similarity theory Surface temperature Temperature gradients Temperature measurement Temperature profile Temperature profiles Turbulence turbulent flow Vegetation |
title | Rethinking the Roughness Height: An Improved Description of Temperature Profiles over Short Vegetation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A27%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rethinking%20the%20Roughness%20Height:%20An%20Improved%20Description%20of%20Temperature%20Profiles%20over%20Short%20Vegetation&rft.jtitle=Boundary-layer%20meteorology&rft.au=Boekee,%20Judith&rft.date=2024-07-01&rft.volume=190&rft.issue=7&rft.spage=31&rft.epage=31&rft.pages=31-31&rft.artnum=31&rft.issn=0006-8314&rft.eissn=1573-1472&rft_id=info:doi/10.1007/s10546-024-00871-z&rft_dat=%3Cproquest_cross%3E3153655721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070914075&rft_id=info:pmid/&rfr_iscdi=true |