Rethinking the Roughness Height: An Improved Description of Temperature Profiles over Short Vegetation

In this study, we present an extension to the Monin–Obukov similarity theory (MOST) for the roughness sublayer (RSL) over short vegetation. We test our theory using temperature measurements from fiber optic cables in an array-shaped set-up. This provides a high vertical measurement resolution that e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary-layer meteorology 2024-07, Vol.190 (7), p.31-31, Article 31
Hauptverfasser: Boekee, Judith, van der Linden, Steven J. A., ten Veldhuis, Marie-Claire, Verouden, Iris E. A., Nollen, Paul J., Dai, Yi, Jongen, Harro J., van de Wiel, Bas J. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31
container_issue 7
container_start_page 31
container_title Boundary-layer meteorology
container_volume 190
creator Boekee, Judith
van der Linden, Steven J. A.
ten Veldhuis, Marie-Claire
Verouden, Iris E. A.
Nollen, Paul J.
Dai, Yi
Jongen, Harro J.
van de Wiel, Bas J. H.
description In this study, we present an extension to the Monin–Obukov similarity theory (MOST) for the roughness sublayer (RSL) over short vegetation. We test our theory using temperature measurements from fiber optic cables in an array-shaped set-up. This provides a high vertical measurement resolution that enables us to measure the sharp temperature gradients near the surface. It is well-known that MOST is invalid in the RSL as the flow is distorted by roughness elements. However, to derive the surface temperature, it is common practice to extrapolate the logarithmic profiles down to the surface through the RSL. Instead of logarithmic behaviour defined by MOST near the surface, our observations show near-linear temperature profiles. This log-to-linear transition is described over an aerodynamically smooth surface by the Van Driest equation in classical turbulence literature. Here we propose that the Van Driest equation can also be used to describe this transition over a rough surface, by replacing the viscous length scale with a surface length scale L s that represents the size of the smallest eddies near the grass structures. We show that L s scales with the geometry of the vegetation and that the model shows the potential to be scaled up to tall canopies. The adapted Van Driest model outperforms the roughness length concept in describing the temperature profiles near the surface and predicting the surface temperature.
doi_str_mv 10.1007/s10546-024-00871-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153655721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153655721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-c5b814132c92acfba77509d8f6f9ed498f086295a2a436c22ce5a7a83cd376573</originalsourceid><addsrcrecordid>eNp9kE1PGzEQhq0KpAboH-jJEhcuS8df611uCFqIhASCtFfLcca7G5J1anuRyq-vaSpV4tDTaKTnfTXzEPKZwTkD0F8SAyXrCrisABrNqtcPZMaUFhWTmh-QGQDUVSOY_EiOUlqXVTMFM-IfMffD-DyMHc090scwdf2IKdFbHLo-X9DLkc63uxhecEWvMbk47PIQRho8XeB2h9HmKSJ9iMEPG0y0gJE-9SFm-gM7zPaNPiGH3m4Sfvo7j8n3b18XV7fV3f3N_OryrnJC6lw5tWyYZIK7llvnl1ZrBe2q8bVvcSXbxkNT81ZZbqWoHecOldW2EW4ldF3ePSZn-95y8M8JUzbbITncbOyIYUpGMCVqpTRnBT19h67DFMdynRGgoWUStCoU31MuhpQierOLw9bGX4aBeVNv9upNUW_-qDevJST2oVTgscP4r_o_qd92JId7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070914075</pqid></control><display><type>article</type><title>Rethinking the Roughness Height: An Improved Description of Temperature Profiles over Short Vegetation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Boekee, Judith ; van der Linden, Steven J. A. ; ten Veldhuis, Marie-Claire ; Verouden, Iris E. A. ; Nollen, Paul J. ; Dai, Yi ; Jongen, Harro J. ; van de Wiel, Bas J. H.</creator><creatorcontrib>Boekee, Judith ; van der Linden, Steven J. A. ; ten Veldhuis, Marie-Claire ; Verouden, Iris E. A. ; Nollen, Paul J. ; Dai, Yi ; Jongen, Harro J. ; van de Wiel, Bas J. H.</creatorcontrib><description>In this study, we present an extension to the Monin–Obukov similarity theory (MOST) for the roughness sublayer (RSL) over short vegetation. We test our theory using temperature measurements from fiber optic cables in an array-shaped set-up. This provides a high vertical measurement resolution that enables us to measure the sharp temperature gradients near the surface. It is well-known that MOST is invalid in the RSL as the flow is distorted by roughness elements. However, to derive the surface temperature, it is common practice to extrapolate the logarithmic profiles down to the surface through the RSL. Instead of logarithmic behaviour defined by MOST near the surface, our observations show near-linear temperature profiles. This log-to-linear transition is described over an aerodynamically smooth surface by the Van Driest equation in classical turbulence literature. Here we propose that the Van Driest equation can also be used to describe this transition over a rough surface, by replacing the viscous length scale with a surface length scale L s that represents the size of the smallest eddies near the grass structures. We show that L s scales with the geometry of the vegetation and that the model shows the potential to be scaled up to tall canopies. The adapted Van Driest model outperforms the roughness length concept in describing the temperature profiles near the surface and predicting the surface temperature.</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1007/s10546-024-00871-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Cables ; Earth and Environmental Science ; Earth Sciences ; Eddies ; equations ; Fiber optics ; geometry ; grasses ; Logarithms ; Meteorology ; Optical fibres ; Research Article ; Roughness ; Roughness length ; Similarity theory ; Surface temperature ; Temperature gradients ; Temperature measurement ; Temperature profile ; Temperature profiles ; Turbulence ; turbulent flow ; Vegetation</subject><ispartof>Boundary-layer meteorology, 2024-07, Vol.190 (7), p.31-31, Article 31</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c347t-c5b814132c92acfba77509d8f6f9ed498f086295a2a436c22ce5a7a83cd376573</cites><orcidid>0000-0001-9572-2193 ; 0000-0002-7538-4796 ; 0000-0002-9480-1225 ; 0000-0001-9150-0892 ; 0000-0002-1861-2596 ; 0000-0001-9166-4918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10546-024-00871-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10546-024-00871-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Boekee, Judith</creatorcontrib><creatorcontrib>van der Linden, Steven J. A.</creatorcontrib><creatorcontrib>ten Veldhuis, Marie-Claire</creatorcontrib><creatorcontrib>Verouden, Iris E. A.</creatorcontrib><creatorcontrib>Nollen, Paul J.</creatorcontrib><creatorcontrib>Dai, Yi</creatorcontrib><creatorcontrib>Jongen, Harro J.</creatorcontrib><creatorcontrib>van de Wiel, Bas J. H.</creatorcontrib><title>Rethinking the Roughness Height: An Improved Description of Temperature Profiles over Short Vegetation</title><title>Boundary-layer meteorology</title><addtitle>Boundary-Layer Meteorol</addtitle><description>In this study, we present an extension to the Monin–Obukov similarity theory (MOST) for the roughness sublayer (RSL) over short vegetation. We test our theory using temperature measurements from fiber optic cables in an array-shaped set-up. This provides a high vertical measurement resolution that enables us to measure the sharp temperature gradients near the surface. It is well-known that MOST is invalid in the RSL as the flow is distorted by roughness elements. However, to derive the surface temperature, it is common practice to extrapolate the logarithmic profiles down to the surface through the RSL. Instead of logarithmic behaviour defined by MOST near the surface, our observations show near-linear temperature profiles. This log-to-linear transition is described over an aerodynamically smooth surface by the Van Driest equation in classical turbulence literature. Here we propose that the Van Driest equation can also be used to describe this transition over a rough surface, by replacing the viscous length scale with a surface length scale L s that represents the size of the smallest eddies near the grass structures. We show that L s scales with the geometry of the vegetation and that the model shows the potential to be scaled up to tall canopies. The adapted Van Driest model outperforms the roughness length concept in describing the temperature profiles near the surface and predicting the surface temperature.</description><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Cables</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Eddies</subject><subject>equations</subject><subject>Fiber optics</subject><subject>geometry</subject><subject>grasses</subject><subject>Logarithms</subject><subject>Meteorology</subject><subject>Optical fibres</subject><subject>Research Article</subject><subject>Roughness</subject><subject>Roughness length</subject><subject>Similarity theory</subject><subject>Surface temperature</subject><subject>Temperature gradients</subject><subject>Temperature measurement</subject><subject>Temperature profile</subject><subject>Temperature profiles</subject><subject>Turbulence</subject><subject>turbulent flow</subject><subject>Vegetation</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1PGzEQhq0KpAboH-jJEhcuS8df611uCFqIhASCtFfLcca7G5J1anuRyq-vaSpV4tDTaKTnfTXzEPKZwTkD0F8SAyXrCrisABrNqtcPZMaUFhWTmh-QGQDUVSOY_EiOUlqXVTMFM-IfMffD-DyMHc090scwdf2IKdFbHLo-X9DLkc63uxhecEWvMbk47PIQRho8XeB2h9HmKSJ9iMEPG0y0gJE-9SFm-gM7zPaNPiGH3m4Sfvo7j8n3b18XV7fV3f3N_OryrnJC6lw5tWyYZIK7llvnl1ZrBe2q8bVvcSXbxkNT81ZZbqWoHecOldW2EW4ldF3ePSZn-95y8M8JUzbbITncbOyIYUpGMCVqpTRnBT19h67DFMdynRGgoWUStCoU31MuhpQierOLw9bGX4aBeVNv9upNUW_-qDevJST2oVTgscP4r_o_qd92JId7</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Boekee, Judith</creator><creator>van der Linden, Steven J. A.</creator><creator>ten Veldhuis, Marie-Claire</creator><creator>Verouden, Iris E. A.</creator><creator>Nollen, Paul J.</creator><creator>Dai, Yi</creator><creator>Jongen, Harro J.</creator><creator>van de Wiel, Bas J. H.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9572-2193</orcidid><orcidid>https://orcid.org/0000-0002-7538-4796</orcidid><orcidid>https://orcid.org/0000-0002-9480-1225</orcidid><orcidid>https://orcid.org/0000-0001-9150-0892</orcidid><orcidid>https://orcid.org/0000-0002-1861-2596</orcidid><orcidid>https://orcid.org/0000-0001-9166-4918</orcidid></search><sort><creationdate>20240701</creationdate><title>Rethinking the Roughness Height: An Improved Description of Temperature Profiles over Short Vegetation</title><author>Boekee, Judith ; van der Linden, Steven J. A. ; ten Veldhuis, Marie-Claire ; Verouden, Iris E. A. ; Nollen, Paul J. ; Dai, Yi ; Jongen, Harro J. ; van de Wiel, Bas J. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-c5b814132c92acfba77509d8f6f9ed498f086295a2a436c22ce5a7a83cd376573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Cables</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Eddies</topic><topic>equations</topic><topic>Fiber optics</topic><topic>geometry</topic><topic>grasses</topic><topic>Logarithms</topic><topic>Meteorology</topic><topic>Optical fibres</topic><topic>Research Article</topic><topic>Roughness</topic><topic>Roughness length</topic><topic>Similarity theory</topic><topic>Surface temperature</topic><topic>Temperature gradients</topic><topic>Temperature measurement</topic><topic>Temperature profile</topic><topic>Temperature profiles</topic><topic>Turbulence</topic><topic>turbulent flow</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boekee, Judith</creatorcontrib><creatorcontrib>van der Linden, Steven J. A.</creatorcontrib><creatorcontrib>ten Veldhuis, Marie-Claire</creatorcontrib><creatorcontrib>Verouden, Iris E. A.</creatorcontrib><creatorcontrib>Nollen, Paul J.</creatorcontrib><creatorcontrib>Dai, Yi</creatorcontrib><creatorcontrib>Jongen, Harro J.</creatorcontrib><creatorcontrib>van de Wiel, Bas J. H.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boekee, Judith</au><au>van der Linden, Steven J. A.</au><au>ten Veldhuis, Marie-Claire</au><au>Verouden, Iris E. A.</au><au>Nollen, Paul J.</au><au>Dai, Yi</au><au>Jongen, Harro J.</au><au>van de Wiel, Bas J. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rethinking the Roughness Height: An Improved Description of Temperature Profiles over Short Vegetation</atitle><jtitle>Boundary-layer meteorology</jtitle><stitle>Boundary-Layer Meteorol</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>190</volume><issue>7</issue><spage>31</spage><epage>31</epage><pages>31-31</pages><artnum>31</artnum><issn>0006-8314</issn><eissn>1573-1472</eissn><abstract>In this study, we present an extension to the Monin–Obukov similarity theory (MOST) for the roughness sublayer (RSL) over short vegetation. We test our theory using temperature measurements from fiber optic cables in an array-shaped set-up. This provides a high vertical measurement resolution that enables us to measure the sharp temperature gradients near the surface. It is well-known that MOST is invalid in the RSL as the flow is distorted by roughness elements. However, to derive the surface temperature, it is common practice to extrapolate the logarithmic profiles down to the surface through the RSL. Instead of logarithmic behaviour defined by MOST near the surface, our observations show near-linear temperature profiles. This log-to-linear transition is described over an aerodynamically smooth surface by the Van Driest equation in classical turbulence literature. Here we propose that the Van Driest equation can also be used to describe this transition over a rough surface, by replacing the viscous length scale with a surface length scale L s that represents the size of the smallest eddies near the grass structures. We show that L s scales with the geometry of the vegetation and that the model shows the potential to be scaled up to tall canopies. The adapted Van Driest model outperforms the roughness length concept in describing the temperature profiles near the surface and predicting the surface temperature.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10546-024-00871-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9572-2193</orcidid><orcidid>https://orcid.org/0000-0002-7538-4796</orcidid><orcidid>https://orcid.org/0000-0002-9480-1225</orcidid><orcidid>https://orcid.org/0000-0001-9150-0892</orcidid><orcidid>https://orcid.org/0000-0002-1861-2596</orcidid><orcidid>https://orcid.org/0000-0001-9166-4918</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-8314
ispartof Boundary-layer meteorology, 2024-07, Vol.190 (7), p.31-31, Article 31
issn 0006-8314
1573-1472
language eng
recordid cdi_proquest_miscellaneous_3153655721
source SpringerLink Journals - AutoHoldings
subjects Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Cables
Earth and Environmental Science
Earth Sciences
Eddies
equations
Fiber optics
geometry
grasses
Logarithms
Meteorology
Optical fibres
Research Article
Roughness
Roughness length
Similarity theory
Surface temperature
Temperature gradients
Temperature measurement
Temperature profile
Temperature profiles
Turbulence
turbulent flow
Vegetation
title Rethinking the Roughness Height: An Improved Description of Temperature Profiles over Short Vegetation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A27%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rethinking%20the%20Roughness%20Height:%20An%20Improved%20Description%20of%20Temperature%20Profiles%20over%20Short%20Vegetation&rft.jtitle=Boundary-layer%20meteorology&rft.au=Boekee,%20Judith&rft.date=2024-07-01&rft.volume=190&rft.issue=7&rft.spage=31&rft.epage=31&rft.pages=31-31&rft.artnum=31&rft.issn=0006-8314&rft.eissn=1573-1472&rft_id=info:doi/10.1007/s10546-024-00871-z&rft_dat=%3Cproquest_cross%3E3153655721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070914075&rft_id=info:pmid/&rfr_iscdi=true