MATRESHCA: Microtesla Apparatus for Transfer of Resonance Enhancement of Spin Hyperpolarization via Chemical Exchange and Addition
We present an integrated, open-source device for parahydrogen-based hyperpolarization processes in the microtesla field regime with a cost of components of less than $7000. The device is designed to produce a batch of 13C and 15N hyperpolarized (HP) compounds via hydrogenative or non-hydrogenative p...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2024-03, Vol.96 (10), p.4171-4179 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4179 |
---|---|
container_issue | 10 |
container_start_page | 4171 |
container_title | Analytical chemistry (Washington) |
container_volume | 96 |
creator | Nantogma, Shiraz Chowdhury, Md Raduanul H. Kabir, Mohammad S. H. Adelabu, Isaiah Joshi, Sameer M. Samoilenko, Anna de Maissin, Henri Schmidt, Andreas B. Nikolaou, Panayiotis Chekmenev, Yuri A. Salnikov, Oleg G. Chukanov, Nikita V. Koptyug, Igor V. Goodson, Boyd M. Chekmenev, Eduard Y. |
description | We present an integrated, open-source device for parahydrogen-based hyperpolarization processes in the microtesla field regime with a cost of components of less than $7000. The device is designed to produce a batch of 13C and 15N hyperpolarized (HP) compounds via hydrogenative or non-hydrogenative parahydrogen-induced polarization methods that employ microtesla magnetic fields for efficient polarization transfer of parahydrogen-derived spin order to X-nuclei (e.g., 13C and 15N). The apparatus employs a layered structure (reminiscent of a Russian doll “Matryoshka”) that includes a nonmagnetic variable-temperature sample chamber, a microtesla magnetic field coil (operating in the range of 0.02–75 microtesla), a three-layered mu-metal shield (to attenuate the ambient magnetic field), and a magnetic shield degaussing coil placed in the overall device enclosure. The gas-handling manifold allows for parahydrogen-gas flow and pressure control (up to 9.2 bar of total parahydrogen pressure). The sample temperature can be varied either using a water bath or a PID-controlled heat exchanger in the range from −12 to 80 °C. This benchtop device measures 62 cm (length) × 47 cm (width) × 47 cm (height), weighs 30 kg, and requires only connections to a high-pressure parahydrogen gas supply and a single 110/220 VAC power source. The utility of the device has been demonstrated using an example of parahydrogen pairwise addition to form HP ethyl [1-13C]acetate (P 13C = 7%, [c] = 1 M). Moreover, the Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) technique was employed to demonstrate efficient hyperpolarization of 13C and 15N spins in a wide range of biologically relevant molecules, including [1-13C]pyruvate (P 13C = 14%, [c] = 27 mM), [1-13C]-α-ketoglutarate (P 13C = 17%), [1-13C]ketoisocaproate (P 13C = 18%), [15N3]metronidazole (P 15N = 13%, [c] = 20 mM), and others. While the vast majority of the utility studies have been performed in standard 5 mm NMR tubes, the sample chamber of the device can accommodate a wide range of sample container sizes and geometries of up to 1 L sample volume. The device establishes an integrated, simple, inexpensive, and versatile equipment gateway needed to facilitate parahydrogen-based hyperpolarization experiments ranging from basic science to preclinical applications; indeed, detailed technical drawings and a bill of materials are provided to support the ready translation of |
doi_str_mv | 10.1021/acs.analchem.3c05233 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153654291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928242909</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-70f705c7de8ef38235676b0abbff23879853d28f6e8fab0dd5c0ee6f2d8eff73</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EosvCGyBkiQuXLGN7HTvcotXCIrVCavceTRybpkqcYCcV5ciT42i3PXCA0xz8_f-M_BHylsGGAWcf0cQNeuzMre03woDkQjwjKyY5ZLnW_DlZAYDIuAK4IK9ivANgDFj-klwILaQuWL4iv6_K4_X-5rArP9Gr1oRhsrFDWo4jBpzmSN0Q6DGgj84GOjh6bePg0RtL9_52mb310_JwM7aeHh5GG8ahw9D-wqkdPL1vke7Sia3Bju5_mpT5bin6hpZN0y7Ia_LCYRftm_Nck-Pn_XF3yC6_ffm6Ky8z3EIxZQqcAmlUY7V1QnMhc5XXgHXtHBdaFVqKhmuXW-2whqaRBqzNHW8S75RYkw-n2jEMP2Ybp6pvo7Fdh94Oc6wEkyKXW16w_6K84JonEoqEvv8LvRvmkLQslFRKKkhe1mR7otIHxxisq8bQ9hgeKgbVYrNKNqtHm9XZZoq9O5fPdW-bp9CjvgTACVjiT4v_2fkHJwyvLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957757023</pqid></control><display><type>article</type><title>MATRESHCA: Microtesla Apparatus for Transfer of Resonance Enhancement of Spin Hyperpolarization via Chemical Exchange and Addition</title><source>ACS Publications</source><creator>Nantogma, Shiraz ; Chowdhury, Md Raduanul H. ; Kabir, Mohammad S. H. ; Adelabu, Isaiah ; Joshi, Sameer M. ; Samoilenko, Anna ; de Maissin, Henri ; Schmidt, Andreas B. ; Nikolaou, Panayiotis ; Chekmenev, Yuri A. ; Salnikov, Oleg G. ; Chukanov, Nikita V. ; Koptyug, Igor V. ; Goodson, Boyd M. ; Chekmenev, Eduard Y.</creator><creatorcontrib>Nantogma, Shiraz ; Chowdhury, Md Raduanul H. ; Kabir, Mohammad S. H. ; Adelabu, Isaiah ; Joshi, Sameer M. ; Samoilenko, Anna ; de Maissin, Henri ; Schmidt, Andreas B. ; Nikolaou, Panayiotis ; Chekmenev, Yuri A. ; Salnikov, Oleg G. ; Chukanov, Nikita V. ; Koptyug, Igor V. ; Goodson, Boyd M. ; Chekmenev, Eduard Y.</creatorcontrib><description>We present an integrated, open-source device for parahydrogen-based hyperpolarization processes in the microtesla field regime with a cost of components of less than $7000. The device is designed to produce a batch of 13C and 15N hyperpolarized (HP) compounds via hydrogenative or non-hydrogenative parahydrogen-induced polarization methods that employ microtesla magnetic fields for efficient polarization transfer of parahydrogen-derived spin order to X-nuclei (e.g., 13C and 15N). The apparatus employs a layered structure (reminiscent of a Russian doll “Matryoshka”) that includes a nonmagnetic variable-temperature sample chamber, a microtesla magnetic field coil (operating in the range of 0.02–75 microtesla), a three-layered mu-metal shield (to attenuate the ambient magnetic field), and a magnetic shield degaussing coil placed in the overall device enclosure. The gas-handling manifold allows for parahydrogen-gas flow and pressure control (up to 9.2 bar of total parahydrogen pressure). The sample temperature can be varied either using a water bath or a PID-controlled heat exchanger in the range from −12 to 80 °C. This benchtop device measures 62 cm (length) × 47 cm (width) × 47 cm (height), weighs 30 kg, and requires only connections to a high-pressure parahydrogen gas supply and a single 110/220 VAC power source. The utility of the device has been demonstrated using an example of parahydrogen pairwise addition to form HP ethyl [1-13C]acetate (P 13C = 7%, [c] = 1 M). Moreover, the Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) technique was employed to demonstrate efficient hyperpolarization of 13C and 15N spins in a wide range of biologically relevant molecules, including [1-13C]pyruvate (P 13C = 14%, [c] = 27 mM), [1-13C]-α-ketoglutarate (P 13C = 17%), [1-13C]ketoisocaproate (P 13C = 18%), [15N3]metronidazole (P 15N = 13%, [c] = 20 mM), and others. While the vast majority of the utility studies have been performed in standard 5 mm NMR tubes, the sample chamber of the device can accommodate a wide range of sample container sizes and geometries of up to 1 L sample volume. The device establishes an integrated, simple, inexpensive, and versatile equipment gateway needed to facilitate parahydrogen-based hyperpolarization experiments ranging from basic science to preclinical applications; indeed, detailed technical drawings and a bill of materials are provided to support the ready translation of this design to other laboratories.</description><identifier>ISSN: 0003-2700</identifier><identifier>ISSN: 1520-6882</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.3c05233</identifier><identifier>PMID: 38358916</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acetic acid ; analytical chemistry ; Chambers ; Computer networks ; Engineering drawings ; Field coils ; Gas flow ; Heat exchangers ; Hyperpolarization ; Induced polarization ; Ketoglutaric acid ; Magnetic fields ; Magnetic shielding ; Metronidazole ; Nitrogen isotopes ; NMR ; Nuclear magnetic resonance ; Polarization (spin alignment) ; Power sources ; Proportional integral derivative ; Pyruvic acid ; Sheaths ; temperature ; Tubes ; Water baths</subject><ispartof>Analytical chemistry (Washington), 2024-03, Vol.96 (10), p.4171-4179</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Mar 12, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-70f705c7de8ef38235676b0abbff23879853d28f6e8fab0dd5c0ee6f2d8eff73</citedby><cites>FETCH-LOGICAL-a409t-70f705c7de8ef38235676b0abbff23879853d28f6e8fab0dd5c0ee6f2d8eff73</cites><orcidid>0000-0002-9475-0851 ; 0000-0001-6079-5077 ; 0000-0003-3480-7649 ; 0000-0003-2266-7335 ; 0000-0001-8944-7463 ; 0000-0002-3802-0803 ; 0000-0002-8745-8801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.3c05233$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.3c05233$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38358916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nantogma, Shiraz</creatorcontrib><creatorcontrib>Chowdhury, Md Raduanul H.</creatorcontrib><creatorcontrib>Kabir, Mohammad S. H.</creatorcontrib><creatorcontrib>Adelabu, Isaiah</creatorcontrib><creatorcontrib>Joshi, Sameer M.</creatorcontrib><creatorcontrib>Samoilenko, Anna</creatorcontrib><creatorcontrib>de Maissin, Henri</creatorcontrib><creatorcontrib>Schmidt, Andreas B.</creatorcontrib><creatorcontrib>Nikolaou, Panayiotis</creatorcontrib><creatorcontrib>Chekmenev, Yuri A.</creatorcontrib><creatorcontrib>Salnikov, Oleg G.</creatorcontrib><creatorcontrib>Chukanov, Nikita V.</creatorcontrib><creatorcontrib>Koptyug, Igor V.</creatorcontrib><creatorcontrib>Goodson, Boyd M.</creatorcontrib><creatorcontrib>Chekmenev, Eduard Y.</creatorcontrib><title>MATRESHCA: Microtesla Apparatus for Transfer of Resonance Enhancement of Spin Hyperpolarization via Chemical Exchange and Addition</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>We present an integrated, open-source device for parahydrogen-based hyperpolarization processes in the microtesla field regime with a cost of components of less than $7000. The device is designed to produce a batch of 13C and 15N hyperpolarized (HP) compounds via hydrogenative or non-hydrogenative parahydrogen-induced polarization methods that employ microtesla magnetic fields for efficient polarization transfer of parahydrogen-derived spin order to X-nuclei (e.g., 13C and 15N). The apparatus employs a layered structure (reminiscent of a Russian doll “Matryoshka”) that includes a nonmagnetic variable-temperature sample chamber, a microtesla magnetic field coil (operating in the range of 0.02–75 microtesla), a three-layered mu-metal shield (to attenuate the ambient magnetic field), and a magnetic shield degaussing coil placed in the overall device enclosure. The gas-handling manifold allows for parahydrogen-gas flow and pressure control (up to 9.2 bar of total parahydrogen pressure). The sample temperature can be varied either using a water bath or a PID-controlled heat exchanger in the range from −12 to 80 °C. This benchtop device measures 62 cm (length) × 47 cm (width) × 47 cm (height), weighs 30 kg, and requires only connections to a high-pressure parahydrogen gas supply and a single 110/220 VAC power source. The utility of the device has been demonstrated using an example of parahydrogen pairwise addition to form HP ethyl [1-13C]acetate (P 13C = 7%, [c] = 1 M). Moreover, the Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) technique was employed to demonstrate efficient hyperpolarization of 13C and 15N spins in a wide range of biologically relevant molecules, including [1-13C]pyruvate (P 13C = 14%, [c] = 27 mM), [1-13C]-α-ketoglutarate (P 13C = 17%), [1-13C]ketoisocaproate (P 13C = 18%), [15N3]metronidazole (P 15N = 13%, [c] = 20 mM), and others. While the vast majority of the utility studies have been performed in standard 5 mm NMR tubes, the sample chamber of the device can accommodate a wide range of sample container sizes and geometries of up to 1 L sample volume. The device establishes an integrated, simple, inexpensive, and versatile equipment gateway needed to facilitate parahydrogen-based hyperpolarization experiments ranging from basic science to preclinical applications; indeed, detailed technical drawings and a bill of materials are provided to support the ready translation of this design to other laboratories.</description><subject>Acetic acid</subject><subject>analytical chemistry</subject><subject>Chambers</subject><subject>Computer networks</subject><subject>Engineering drawings</subject><subject>Field coils</subject><subject>Gas flow</subject><subject>Heat exchangers</subject><subject>Hyperpolarization</subject><subject>Induced polarization</subject><subject>Ketoglutaric acid</subject><subject>Magnetic fields</subject><subject>Magnetic shielding</subject><subject>Metronidazole</subject><subject>Nitrogen isotopes</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Polarization (spin alignment)</subject><subject>Power sources</subject><subject>Proportional integral derivative</subject><subject>Pyruvic acid</subject><subject>Sheaths</subject><subject>temperature</subject><subject>Tubes</subject><subject>Water baths</subject><issn>0003-2700</issn><issn>1520-6882</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi0EosvCGyBkiQuXLGN7HTvcotXCIrVCavceTRybpkqcYCcV5ciT42i3PXCA0xz8_f-M_BHylsGGAWcf0cQNeuzMre03woDkQjwjKyY5ZLnW_DlZAYDIuAK4IK9ivANgDFj-klwILaQuWL4iv6_K4_X-5rArP9Gr1oRhsrFDWo4jBpzmSN0Q6DGgj84GOjh6bePg0RtL9_52mb310_JwM7aeHh5GG8ahw9D-wqkdPL1vke7Sia3Bju5_mpT5bin6hpZN0y7Ia_LCYRftm_Nck-Pn_XF3yC6_ffm6Ky8z3EIxZQqcAmlUY7V1QnMhc5XXgHXtHBdaFVqKhmuXW-2whqaRBqzNHW8S75RYkw-n2jEMP2Ybp6pvo7Fdh94Oc6wEkyKXW16w_6K84JonEoqEvv8LvRvmkLQslFRKKkhe1mR7otIHxxisq8bQ9hgeKgbVYrNKNqtHm9XZZoq9O5fPdW-bp9CjvgTACVjiT4v_2fkHJwyvLQ</recordid><startdate>20240312</startdate><enddate>20240312</enddate><creator>Nantogma, Shiraz</creator><creator>Chowdhury, Md Raduanul H.</creator><creator>Kabir, Mohammad S. H.</creator><creator>Adelabu, Isaiah</creator><creator>Joshi, Sameer M.</creator><creator>Samoilenko, Anna</creator><creator>de Maissin, Henri</creator><creator>Schmidt, Andreas B.</creator><creator>Nikolaou, Panayiotis</creator><creator>Chekmenev, Yuri A.</creator><creator>Salnikov, Oleg G.</creator><creator>Chukanov, Nikita V.</creator><creator>Koptyug, Igor V.</creator><creator>Goodson, Boyd M.</creator><creator>Chekmenev, Eduard Y.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-9475-0851</orcidid><orcidid>https://orcid.org/0000-0001-6079-5077</orcidid><orcidid>https://orcid.org/0000-0003-3480-7649</orcidid><orcidid>https://orcid.org/0000-0003-2266-7335</orcidid><orcidid>https://orcid.org/0000-0001-8944-7463</orcidid><orcidid>https://orcid.org/0000-0002-3802-0803</orcidid><orcidid>https://orcid.org/0000-0002-8745-8801</orcidid></search><sort><creationdate>20240312</creationdate><title>MATRESHCA: Microtesla Apparatus for Transfer of Resonance Enhancement of Spin Hyperpolarization via Chemical Exchange and Addition</title><author>Nantogma, Shiraz ; Chowdhury, Md Raduanul H. ; Kabir, Mohammad S. H. ; Adelabu, Isaiah ; Joshi, Sameer M. ; Samoilenko, Anna ; de Maissin, Henri ; Schmidt, Andreas B. ; Nikolaou, Panayiotis ; Chekmenev, Yuri A. ; Salnikov, Oleg G. ; Chukanov, Nikita V. ; Koptyug, Igor V. ; Goodson, Boyd M. ; Chekmenev, Eduard Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-70f705c7de8ef38235676b0abbff23879853d28f6e8fab0dd5c0ee6f2d8eff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acetic acid</topic><topic>analytical chemistry</topic><topic>Chambers</topic><topic>Computer networks</topic><topic>Engineering drawings</topic><topic>Field coils</topic><topic>Gas flow</topic><topic>Heat exchangers</topic><topic>Hyperpolarization</topic><topic>Induced polarization</topic><topic>Ketoglutaric acid</topic><topic>Magnetic fields</topic><topic>Magnetic shielding</topic><topic>Metronidazole</topic><topic>Nitrogen isotopes</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Polarization (spin alignment)</topic><topic>Power sources</topic><topic>Proportional integral derivative</topic><topic>Pyruvic acid</topic><topic>Sheaths</topic><topic>temperature</topic><topic>Tubes</topic><topic>Water baths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nantogma, Shiraz</creatorcontrib><creatorcontrib>Chowdhury, Md Raduanul H.</creatorcontrib><creatorcontrib>Kabir, Mohammad S. H.</creatorcontrib><creatorcontrib>Adelabu, Isaiah</creatorcontrib><creatorcontrib>Joshi, Sameer M.</creatorcontrib><creatorcontrib>Samoilenko, Anna</creatorcontrib><creatorcontrib>de Maissin, Henri</creatorcontrib><creatorcontrib>Schmidt, Andreas B.</creatorcontrib><creatorcontrib>Nikolaou, Panayiotis</creatorcontrib><creatorcontrib>Chekmenev, Yuri A.</creatorcontrib><creatorcontrib>Salnikov, Oleg G.</creatorcontrib><creatorcontrib>Chukanov, Nikita V.</creatorcontrib><creatorcontrib>Koptyug, Igor V.</creatorcontrib><creatorcontrib>Goodson, Boyd M.</creatorcontrib><creatorcontrib>Chekmenev, Eduard Y.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nantogma, Shiraz</au><au>Chowdhury, Md Raduanul H.</au><au>Kabir, Mohammad S. H.</au><au>Adelabu, Isaiah</au><au>Joshi, Sameer M.</au><au>Samoilenko, Anna</au><au>de Maissin, Henri</au><au>Schmidt, Andreas B.</au><au>Nikolaou, Panayiotis</au><au>Chekmenev, Yuri A.</au><au>Salnikov, Oleg G.</au><au>Chukanov, Nikita V.</au><au>Koptyug, Igor V.</au><au>Goodson, Boyd M.</au><au>Chekmenev, Eduard Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MATRESHCA: Microtesla Apparatus for Transfer of Resonance Enhancement of Spin Hyperpolarization via Chemical Exchange and Addition</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2024-03-12</date><risdate>2024</risdate><volume>96</volume><issue>10</issue><spage>4171</spage><epage>4179</epage><pages>4171-4179</pages><issn>0003-2700</issn><issn>1520-6882</issn><eissn>1520-6882</eissn><abstract>We present an integrated, open-source device for parahydrogen-based hyperpolarization processes in the microtesla field regime with a cost of components of less than $7000. The device is designed to produce a batch of 13C and 15N hyperpolarized (HP) compounds via hydrogenative or non-hydrogenative parahydrogen-induced polarization methods that employ microtesla magnetic fields for efficient polarization transfer of parahydrogen-derived spin order to X-nuclei (e.g., 13C and 15N). The apparatus employs a layered structure (reminiscent of a Russian doll “Matryoshka”) that includes a nonmagnetic variable-temperature sample chamber, a microtesla magnetic field coil (operating in the range of 0.02–75 microtesla), a three-layered mu-metal shield (to attenuate the ambient magnetic field), and a magnetic shield degaussing coil placed in the overall device enclosure. The gas-handling manifold allows for parahydrogen-gas flow and pressure control (up to 9.2 bar of total parahydrogen pressure). The sample temperature can be varied either using a water bath or a PID-controlled heat exchanger in the range from −12 to 80 °C. This benchtop device measures 62 cm (length) × 47 cm (width) × 47 cm (height), weighs 30 kg, and requires only connections to a high-pressure parahydrogen gas supply and a single 110/220 VAC power source. The utility of the device has been demonstrated using an example of parahydrogen pairwise addition to form HP ethyl [1-13C]acetate (P 13C = 7%, [c] = 1 M). Moreover, the Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) technique was employed to demonstrate efficient hyperpolarization of 13C and 15N spins in a wide range of biologically relevant molecules, including [1-13C]pyruvate (P 13C = 14%, [c] = 27 mM), [1-13C]-α-ketoglutarate (P 13C = 17%), [1-13C]ketoisocaproate (P 13C = 18%), [15N3]metronidazole (P 15N = 13%, [c] = 20 mM), and others. While the vast majority of the utility studies have been performed in standard 5 mm NMR tubes, the sample chamber of the device can accommodate a wide range of sample container sizes and geometries of up to 1 L sample volume. The device establishes an integrated, simple, inexpensive, and versatile equipment gateway needed to facilitate parahydrogen-based hyperpolarization experiments ranging from basic science to preclinical applications; indeed, detailed technical drawings and a bill of materials are provided to support the ready translation of this design to other laboratories.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38358916</pmid><doi>10.1021/acs.analchem.3c05233</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9475-0851</orcidid><orcidid>https://orcid.org/0000-0001-6079-5077</orcidid><orcidid>https://orcid.org/0000-0003-3480-7649</orcidid><orcidid>https://orcid.org/0000-0003-2266-7335</orcidid><orcidid>https://orcid.org/0000-0001-8944-7463</orcidid><orcidid>https://orcid.org/0000-0002-3802-0803</orcidid><orcidid>https://orcid.org/0000-0002-8745-8801</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2024-03, Vol.96 (10), p.4171-4179 |
issn | 0003-2700 1520-6882 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153654291 |
source | ACS Publications |
subjects | Acetic acid analytical chemistry Chambers Computer networks Engineering drawings Field coils Gas flow Heat exchangers Hyperpolarization Induced polarization Ketoglutaric acid Magnetic fields Magnetic shielding Metronidazole Nitrogen isotopes NMR Nuclear magnetic resonance Polarization (spin alignment) Power sources Proportional integral derivative Pyruvic acid Sheaths temperature Tubes Water baths |
title | MATRESHCA: Microtesla Apparatus for Transfer of Resonance Enhancement of Spin Hyperpolarization via Chemical Exchange and Addition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MATRESHCA:%20Microtesla%20Apparatus%20for%20Transfer%20of%20Resonance%20Enhancement%20of%20Spin%20Hyperpolarization%20via%20Chemical%20Exchange%20and%20Addition&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Nantogma,%20Shiraz&rft.date=2024-03-12&rft.volume=96&rft.issue=10&rft.spage=4171&rft.epage=4179&rft.pages=4171-4179&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.3c05233&rft_dat=%3Cproquest_cross%3E2928242909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957757023&rft_id=info:pmid/38358916&rfr_iscdi=true |