Bridging fungal resistance and plant growth through constitutive overexpression of Thchit42 gene in Pelargonium graveolens

Key message Thchit42 constitutive expression for fungal resistance showed synchronisation with leaf augmentation and transcriptome analysis revealed the Longifolia and Zinc finger RICESLEEPER gene is responsible for plant growth and development. Pelargonium graveolens essential oil possesses signifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant cell reports 2024-06, Vol.43 (6), p.147-147, Article 147
Hauptverfasser: Khatoon, Kahkashan, Warsi, Zafar Iqbal, Singh, Akanksha, Singh, Kajal, Khan, Feroz, Singh, Palak, Shukla, Rakesh Kumar, Verma, Ram Swaroop, Singh, Munmun K., Verma, Sanjeet K., Husain, Zakir, Parween, Gazala, Singh, Pooja, Afroz, Shama, Rahman, Laiq Ur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue 6
container_start_page 147
container_title Plant cell reports
container_volume 43
creator Khatoon, Kahkashan
Warsi, Zafar Iqbal
Singh, Akanksha
Singh, Kajal
Khan, Feroz
Singh, Palak
Shukla, Rakesh Kumar
Verma, Ram Swaroop
Singh, Munmun K.
Verma, Sanjeet K.
Husain, Zakir
Parween, Gazala
Singh, Pooja
Afroz, Shama
Rahman, Laiq Ur
description Key message Thchit42 constitutive expression for fungal resistance showed synchronisation with leaf augmentation and transcriptome analysis revealed the Longifolia and Zinc finger RICESLEEPER gene is responsible for plant growth and development. Pelargonium graveolens essential oil possesses significant attributes, known for perfumery and aromatherapy. However, optimal yield and propagation are predominantly hindered by biotic stress. All biotechnological approaches have yet to prove effective in addressing fungal resistance. The current study developed transgenic geranium bridging molecular mechanism of fungal resistance and plant growth by introducing cassette 35S:: Thchit42 . Furthermore, 120 independently putative transformed explants were regenerated on kanamycin fortified medium. Primarily transgenic lines were demonstrated peak pathogenicity and antifungal activity against formidable Colletotrichum gloeosporioides and Fusarium oxysporum . Additionally, phenotypic analysis revealed ~ 2fold increase in leaf size and ~ 2.1fold enhanced oil content. To elucidate the molecular mechanisms for genotypic cause, de novo transcriptional profiles were analyzed to indicate that the auxin-regulated longifolia gene is accountable for augmentation in leaf size, and zinc finger (ZF) RICESLEEPER attributes growth upregulation. Collectively, data provides valuable insights into unravelling the mechanism of Thchit42 -mediated crosstalk between morphological and chemical alteration in transgenic plants. This knowledge might create novel opportunities to cultivate fungal-resistant geranium throughout all seasons to fulfil demand.
doi_str_mv 10.1007/s00299-024-03233-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153648752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057567143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-1369dbbd9efb378cb9ce607e5bfec17992de14b1d3fd02d09c8d9a7c76155feb3</originalsourceid><addsrcrecordid>eNqFkU1vFSEUhomxsdfqH3BhSNy4GcvHMAxLbayaNKmLmrgjDJyZoZkLV2CuH7--tLdq0oWuSDjP-5LDg9ALSt5QQuRpJoQp1RDWNoQzzpv-EdrQlrOGEf71MdoQyWgjJW2P0dOcrwmpQ9k9Qce8v71VdIN-vUveTT5MeFzDZBacIPtcTLCATXB4t5hQ8JTi9zLjMqe4TjO2MeTiy1r8HnDcQ4Ifu5rLPgYcR3w129mXluEJAmAf8GdYTJpi8Ou2Vpk9xAVCfoaORrNkeH5_nqAv5--vzj42F5cfPp29vWgsF6o0lHfKDYNTMA5c9nZQFjoiQQwjWCqVYg5oO1DHR0eYI8r2ThlpZUeFGGHgJ-j1oXeX4rcVctFbny0sdTOIa9acCt61vRTs_ygRslOi5W1FXz1Ar-OaQl3kjhJd_WBeKXagbIo5Jxj1LvmtST81JfpWoj5I1FWivpOo-xp6eV-9DltwfyK_rVWAH4BcR2GC9Pftf9TeAKgUqgM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057567143</pqid></control><display><type>article</type><title>Bridging fungal resistance and plant growth through constitutive overexpression of Thchit42 gene in Pelargonium graveolens</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Khatoon, Kahkashan ; Warsi, Zafar Iqbal ; Singh, Akanksha ; Singh, Kajal ; Khan, Feroz ; Singh, Palak ; Shukla, Rakesh Kumar ; Verma, Ram Swaroop ; Singh, Munmun K. ; Verma, Sanjeet K. ; Husain, Zakir ; Parween, Gazala ; Singh, Pooja ; Afroz, Shama ; Rahman, Laiq Ur</creator><creatorcontrib>Khatoon, Kahkashan ; Warsi, Zafar Iqbal ; Singh, Akanksha ; Singh, Kajal ; Khan, Feroz ; Singh, Palak ; Shukla, Rakesh Kumar ; Verma, Ram Swaroop ; Singh, Munmun K. ; Verma, Sanjeet K. ; Husain, Zakir ; Parween, Gazala ; Singh, Pooja ; Afroz, Shama ; Rahman, Laiq Ur</creatorcontrib><description>Key message Thchit42 constitutive expression for fungal resistance showed synchronisation with leaf augmentation and transcriptome analysis revealed the Longifolia and Zinc finger RICESLEEPER gene is responsible for plant growth and development. Pelargonium graveolens essential oil possesses significant attributes, known for perfumery and aromatherapy. However, optimal yield and propagation are predominantly hindered by biotic stress. All biotechnological approaches have yet to prove effective in addressing fungal resistance. The current study developed transgenic geranium bridging molecular mechanism of fungal resistance and plant growth by introducing cassette 35S:: Thchit42 . Furthermore, 120 independently putative transformed explants were regenerated on kanamycin fortified medium. Primarily transgenic lines were demonstrated peak pathogenicity and antifungal activity against formidable Colletotrichum gloeosporioides and Fusarium oxysporum . Additionally, phenotypic analysis revealed ~ 2fold increase in leaf size and ~ 2.1fold enhanced oil content. To elucidate the molecular mechanisms for genotypic cause, de novo transcriptional profiles were analyzed to indicate that the auxin-regulated longifolia gene is accountable for augmentation in leaf size, and zinc finger (ZF) RICESLEEPER attributes growth upregulation. Collectively, data provides valuable insights into unravelling the mechanism of Thchit42 -mediated crosstalk between morphological and chemical alteration in transgenic plants. This knowledge might create novel opportunities to cultivate fungal-resistant geranium throughout all seasons to fulfil demand.</description><identifier>ISSN: 0721-7714</identifier><identifier>EISSN: 1432-203X</identifier><identifier>DOI: 10.1007/s00299-024-03233-8</identifier><identifier>PMID: 38771491</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Antifungal activity ; antifungal properties ; Aromatherapy ; Biomedical and Life Sciences ; Biotechnology ; biotic stress ; Cell Biology ; Colletotrichum - pathogenicity ; Colletotrichum - physiology ; Disease Resistance - genetics ; Essential oils ; Explants ; Fungi ; Fungicides ; Fusarium - pathogenicity ; Fusarium - physiology ; Fusarium oxysporum ; gene expression ; Gene Expression Regulation, Plant ; genes ; genetically modified organisms ; Geranium - genetics ; Glomerella cingulata ; growth and development ; Kanamycin ; leaf area ; Leaves ; Life Sciences ; Molecular modelling ; Oils, Volatile - metabolism ; Oils, Volatile - pharmacology ; Optimal yield ; Original Article ; Pathogenicity ; Pathogens ; Pelargonium - genetics ; Pelargonium graveolens ; perfumes ; phenotype ; Plant Biochemistry ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Plant growth ; Plant Leaves - genetics ; Plant Leaves - microbiology ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Sciences ; Plants, Genetically Modified ; Propagation ; Synchronism ; transcription (genetics) ; Transcriptomes ; transcriptomics ; Transgenic plants ; Zinc ; zinc finger motif ; Zinc finger proteins</subject><ispartof>Plant cell reports, 2024-06, Vol.43 (6), p.147-147, Article 147</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-1369dbbd9efb378cb9ce607e5bfec17992de14b1d3fd02d09c8d9a7c76155feb3</cites><orcidid>0000-0003-3289-2755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00299-024-03233-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00299-024-03233-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38771491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khatoon, Kahkashan</creatorcontrib><creatorcontrib>Warsi, Zafar Iqbal</creatorcontrib><creatorcontrib>Singh, Akanksha</creatorcontrib><creatorcontrib>Singh, Kajal</creatorcontrib><creatorcontrib>Khan, Feroz</creatorcontrib><creatorcontrib>Singh, Palak</creatorcontrib><creatorcontrib>Shukla, Rakesh Kumar</creatorcontrib><creatorcontrib>Verma, Ram Swaroop</creatorcontrib><creatorcontrib>Singh, Munmun K.</creatorcontrib><creatorcontrib>Verma, Sanjeet K.</creatorcontrib><creatorcontrib>Husain, Zakir</creatorcontrib><creatorcontrib>Parween, Gazala</creatorcontrib><creatorcontrib>Singh, Pooja</creatorcontrib><creatorcontrib>Afroz, Shama</creatorcontrib><creatorcontrib>Rahman, Laiq Ur</creatorcontrib><title>Bridging fungal resistance and plant growth through constitutive overexpression of Thchit42 gene in Pelargonium graveolens</title><title>Plant cell reports</title><addtitle>Plant Cell Rep</addtitle><addtitle>Plant Cell Rep</addtitle><description>Key message Thchit42 constitutive expression for fungal resistance showed synchronisation with leaf augmentation and transcriptome analysis revealed the Longifolia and Zinc finger RICESLEEPER gene is responsible for plant growth and development. Pelargonium graveolens essential oil possesses significant attributes, known for perfumery and aromatherapy. However, optimal yield and propagation are predominantly hindered by biotic stress. All biotechnological approaches have yet to prove effective in addressing fungal resistance. The current study developed transgenic geranium bridging molecular mechanism of fungal resistance and plant growth by introducing cassette 35S:: Thchit42 . Furthermore, 120 independently putative transformed explants were regenerated on kanamycin fortified medium. Primarily transgenic lines were demonstrated peak pathogenicity and antifungal activity against formidable Colletotrichum gloeosporioides and Fusarium oxysporum . Additionally, phenotypic analysis revealed ~ 2fold increase in leaf size and ~ 2.1fold enhanced oil content. To elucidate the molecular mechanisms for genotypic cause, de novo transcriptional profiles were analyzed to indicate that the auxin-regulated longifolia gene is accountable for augmentation in leaf size, and zinc finger (ZF) RICESLEEPER attributes growth upregulation. Collectively, data provides valuable insights into unravelling the mechanism of Thchit42 -mediated crosstalk between morphological and chemical alteration in transgenic plants. This knowledge might create novel opportunities to cultivate fungal-resistant geranium throughout all seasons to fulfil demand.</description><subject>Antifungal activity</subject><subject>antifungal properties</subject><subject>Aromatherapy</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>biotic stress</subject><subject>Cell Biology</subject><subject>Colletotrichum - pathogenicity</subject><subject>Colletotrichum - physiology</subject><subject>Disease Resistance - genetics</subject><subject>Essential oils</subject><subject>Explants</subject><subject>Fungi</subject><subject>Fungicides</subject><subject>Fusarium - pathogenicity</subject><subject>Fusarium - physiology</subject><subject>Fusarium oxysporum</subject><subject>gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>genes</subject><subject>genetically modified organisms</subject><subject>Geranium - genetics</subject><subject>Glomerella cingulata</subject><subject>growth and development</subject><subject>Kanamycin</subject><subject>leaf area</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Molecular modelling</subject><subject>Oils, Volatile - metabolism</subject><subject>Oils, Volatile - pharmacology</subject><subject>Optimal yield</subject><subject>Original Article</subject><subject>Pathogenicity</subject><subject>Pathogens</subject><subject>Pelargonium - genetics</subject><subject>Pelargonium graveolens</subject><subject>perfumes</subject><subject>phenotype</subject><subject>Plant Biochemistry</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Plant growth</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - microbiology</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Sciences</subject><subject>Plants, Genetically Modified</subject><subject>Propagation</subject><subject>Synchronism</subject><subject>transcription (genetics)</subject><subject>Transcriptomes</subject><subject>transcriptomics</subject><subject>Transgenic plants</subject><subject>Zinc</subject><subject>zinc finger motif</subject><subject>Zinc finger proteins</subject><issn>0721-7714</issn><issn>1432-203X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1vFSEUhomxsdfqH3BhSNy4GcvHMAxLbayaNKmLmrgjDJyZoZkLV2CuH7--tLdq0oWuSDjP-5LDg9ALSt5QQuRpJoQp1RDWNoQzzpv-EdrQlrOGEf71MdoQyWgjJW2P0dOcrwmpQ9k9Qce8v71VdIN-vUveTT5MeFzDZBacIPtcTLCATXB4t5hQ8JTi9zLjMqe4TjO2MeTiy1r8HnDcQ4Ifu5rLPgYcR3w129mXluEJAmAf8GdYTJpi8Ou2Vpk9xAVCfoaORrNkeH5_nqAv5--vzj42F5cfPp29vWgsF6o0lHfKDYNTMA5c9nZQFjoiQQwjWCqVYg5oO1DHR0eYI8r2ThlpZUeFGGHgJ-j1oXeX4rcVctFbny0sdTOIa9acCt61vRTs_ygRslOi5W1FXz1Ar-OaQl3kjhJd_WBeKXagbIo5Jxj1LvmtST81JfpWoj5I1FWivpOo-xp6eV-9DltwfyK_rVWAH4BcR2GC9Pftf9TeAKgUqgM</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Khatoon, Kahkashan</creator><creator>Warsi, Zafar Iqbal</creator><creator>Singh, Akanksha</creator><creator>Singh, Kajal</creator><creator>Khan, Feroz</creator><creator>Singh, Palak</creator><creator>Shukla, Rakesh Kumar</creator><creator>Verma, Ram Swaroop</creator><creator>Singh, Munmun K.</creator><creator>Verma, Sanjeet K.</creator><creator>Husain, Zakir</creator><creator>Parween, Gazala</creator><creator>Singh, Pooja</creator><creator>Afroz, Shama</creator><creator>Rahman, Laiq Ur</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3289-2755</orcidid></search><sort><creationdate>20240601</creationdate><title>Bridging fungal resistance and plant growth through constitutive overexpression of Thchit42 gene in Pelargonium graveolens</title><author>Khatoon, Kahkashan ; Warsi, Zafar Iqbal ; Singh, Akanksha ; Singh, Kajal ; Khan, Feroz ; Singh, Palak ; Shukla, Rakesh Kumar ; Verma, Ram Swaroop ; Singh, Munmun K. ; Verma, Sanjeet K. ; Husain, Zakir ; Parween, Gazala ; Singh, Pooja ; Afroz, Shama ; Rahman, Laiq Ur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-1369dbbd9efb378cb9ce607e5bfec17992de14b1d3fd02d09c8d9a7c76155feb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antifungal activity</topic><topic>antifungal properties</topic><topic>Aromatherapy</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>biotic stress</topic><topic>Cell Biology</topic><topic>Colletotrichum - pathogenicity</topic><topic>Colletotrichum - physiology</topic><topic>Disease Resistance - genetics</topic><topic>Essential oils</topic><topic>Explants</topic><topic>Fungi</topic><topic>Fungicides</topic><topic>Fusarium - pathogenicity</topic><topic>Fusarium - physiology</topic><topic>Fusarium oxysporum</topic><topic>gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>genes</topic><topic>genetically modified organisms</topic><topic>Geranium - genetics</topic><topic>Glomerella cingulata</topic><topic>growth and development</topic><topic>Kanamycin</topic><topic>leaf area</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Molecular modelling</topic><topic>Oils, Volatile - metabolism</topic><topic>Oils, Volatile - pharmacology</topic><topic>Optimal yield</topic><topic>Original Article</topic><topic>Pathogenicity</topic><topic>Pathogens</topic><topic>Pelargonium - genetics</topic><topic>Pelargonium graveolens</topic><topic>perfumes</topic><topic>phenotype</topic><topic>Plant Biochemistry</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Plant growth</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - microbiology</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Sciences</topic><topic>Plants, Genetically Modified</topic><topic>Propagation</topic><topic>Synchronism</topic><topic>transcription (genetics)</topic><topic>Transcriptomes</topic><topic>transcriptomics</topic><topic>Transgenic plants</topic><topic>Zinc</topic><topic>zinc finger motif</topic><topic>Zinc finger proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khatoon, Kahkashan</creatorcontrib><creatorcontrib>Warsi, Zafar Iqbal</creatorcontrib><creatorcontrib>Singh, Akanksha</creatorcontrib><creatorcontrib>Singh, Kajal</creatorcontrib><creatorcontrib>Khan, Feroz</creatorcontrib><creatorcontrib>Singh, Palak</creatorcontrib><creatorcontrib>Shukla, Rakesh Kumar</creatorcontrib><creatorcontrib>Verma, Ram Swaroop</creatorcontrib><creatorcontrib>Singh, Munmun K.</creatorcontrib><creatorcontrib>Verma, Sanjeet K.</creatorcontrib><creatorcontrib>Husain, Zakir</creatorcontrib><creatorcontrib>Parween, Gazala</creatorcontrib><creatorcontrib>Singh, Pooja</creatorcontrib><creatorcontrib>Afroz, Shama</creatorcontrib><creatorcontrib>Rahman, Laiq Ur</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Plant cell reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khatoon, Kahkashan</au><au>Warsi, Zafar Iqbal</au><au>Singh, Akanksha</au><au>Singh, Kajal</au><au>Khan, Feroz</au><au>Singh, Palak</au><au>Shukla, Rakesh Kumar</au><au>Verma, Ram Swaroop</au><au>Singh, Munmun K.</au><au>Verma, Sanjeet K.</au><au>Husain, Zakir</au><au>Parween, Gazala</au><au>Singh, Pooja</au><au>Afroz, Shama</au><au>Rahman, Laiq Ur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridging fungal resistance and plant growth through constitutive overexpression of Thchit42 gene in Pelargonium graveolens</atitle><jtitle>Plant cell reports</jtitle><stitle>Plant Cell Rep</stitle><addtitle>Plant Cell Rep</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>43</volume><issue>6</issue><spage>147</spage><epage>147</epage><pages>147-147</pages><artnum>147</artnum><issn>0721-7714</issn><eissn>1432-203X</eissn><abstract>Key message Thchit42 constitutive expression for fungal resistance showed synchronisation with leaf augmentation and transcriptome analysis revealed the Longifolia and Zinc finger RICESLEEPER gene is responsible for plant growth and development. Pelargonium graveolens essential oil possesses significant attributes, known for perfumery and aromatherapy. However, optimal yield and propagation are predominantly hindered by biotic stress. All biotechnological approaches have yet to prove effective in addressing fungal resistance. The current study developed transgenic geranium bridging molecular mechanism of fungal resistance and plant growth by introducing cassette 35S:: Thchit42 . Furthermore, 120 independently putative transformed explants were regenerated on kanamycin fortified medium. Primarily transgenic lines were demonstrated peak pathogenicity and antifungal activity against formidable Colletotrichum gloeosporioides and Fusarium oxysporum . Additionally, phenotypic analysis revealed ~ 2fold increase in leaf size and ~ 2.1fold enhanced oil content. To elucidate the molecular mechanisms for genotypic cause, de novo transcriptional profiles were analyzed to indicate that the auxin-regulated longifolia gene is accountable for augmentation in leaf size, and zinc finger (ZF) RICESLEEPER attributes growth upregulation. Collectively, data provides valuable insights into unravelling the mechanism of Thchit42 -mediated crosstalk between morphological and chemical alteration in transgenic plants. This knowledge might create novel opportunities to cultivate fungal-resistant geranium throughout all seasons to fulfil demand.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38771491</pmid><doi>10.1007/s00299-024-03233-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3289-2755</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0721-7714
ispartof Plant cell reports, 2024-06, Vol.43 (6), p.147-147, Article 147
issn 0721-7714
1432-203X
language eng
recordid cdi_proquest_miscellaneous_3153648752
source MEDLINE; SpringerLink Journals
subjects Antifungal activity
antifungal properties
Aromatherapy
Biomedical and Life Sciences
Biotechnology
biotic stress
Cell Biology
Colletotrichum - pathogenicity
Colletotrichum - physiology
Disease Resistance - genetics
Essential oils
Explants
Fungi
Fungicides
Fusarium - pathogenicity
Fusarium - physiology
Fusarium oxysporum
gene expression
Gene Expression Regulation, Plant
genes
genetically modified organisms
Geranium - genetics
Glomerella cingulata
growth and development
Kanamycin
leaf area
Leaves
Life Sciences
Molecular modelling
Oils, Volatile - metabolism
Oils, Volatile - pharmacology
Optimal yield
Original Article
Pathogenicity
Pathogens
Pelargonium - genetics
Pelargonium graveolens
perfumes
phenotype
Plant Biochemistry
Plant Diseases - genetics
Plant Diseases - microbiology
Plant growth
Plant Leaves - genetics
Plant Leaves - microbiology
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Sciences
Plants, Genetically Modified
Propagation
Synchronism
transcription (genetics)
Transcriptomes
transcriptomics
Transgenic plants
Zinc
zinc finger motif
Zinc finger proteins
title Bridging fungal resistance and plant growth through constitutive overexpression of Thchit42 gene in Pelargonium graveolens
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridging%20fungal%20resistance%20and%20plant%20growth%20through%20constitutive%20overexpression%20of%20Thchit42%20gene%20in%20Pelargonium%20graveolens&rft.jtitle=Plant%20cell%20reports&rft.au=Khatoon,%20Kahkashan&rft.date=2024-06-01&rft.volume=43&rft.issue=6&rft.spage=147&rft.epage=147&rft.pages=147-147&rft.artnum=147&rft.issn=0721-7714&rft.eissn=1432-203X&rft_id=info:doi/10.1007/s00299-024-03233-8&rft_dat=%3Cproquest_cross%3E3057567143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3057567143&rft_id=info:pmid/38771491&rfr_iscdi=true