Bridging fungal resistance and plant growth through constitutive overexpression of Thchit42 gene in Pelargonium graveolens
Key message Thchit42 constitutive expression for fungal resistance showed synchronisation with leaf augmentation and transcriptome analysis revealed the Longifolia and Zinc finger RICESLEEPER gene is responsible for plant growth and development. Pelargonium graveolens essential oil possesses signifi...
Gespeichert in:
Veröffentlicht in: | Plant cell reports 2024-06, Vol.43 (6), p.147-147, Article 147 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | 6 |
container_start_page | 147 |
container_title | Plant cell reports |
container_volume | 43 |
creator | Khatoon, Kahkashan Warsi, Zafar Iqbal Singh, Akanksha Singh, Kajal Khan, Feroz Singh, Palak Shukla, Rakesh Kumar Verma, Ram Swaroop Singh, Munmun K. Verma, Sanjeet K. Husain, Zakir Parween, Gazala Singh, Pooja Afroz, Shama Rahman, Laiq Ur |
description | Key message
Thchit42
constitutive expression for fungal resistance showed synchronisation with leaf augmentation and transcriptome analysis revealed the Longifolia and Zinc finger RICESLEEPER gene is responsible for plant growth and development.
Pelargonium graveolens
essential oil possesses significant attributes, known for perfumery and aromatherapy. However, optimal yield and propagation are predominantly hindered by biotic stress. All biotechnological approaches have yet to prove effective in addressing fungal resistance. The current study developed transgenic geranium bridging molecular mechanism of fungal resistance and plant growth by introducing cassette 35S::
Thchit42
. Furthermore, 120 independently putative transformed explants were regenerated on kanamycin fortified medium. Primarily transgenic lines were demonstrated peak pathogenicity and antifungal activity against formidable
Colletotrichum gloeosporioides
and
Fusarium oxysporum
. Additionally, phenotypic analysis revealed ~ 2fold increase in leaf size and ~ 2.1fold enhanced oil content. To elucidate the molecular mechanisms for genotypic cause, de novo transcriptional profiles were analyzed to indicate that the auxin-regulated longifolia gene is accountable for augmentation in leaf size, and zinc finger (ZF) RICESLEEPER attributes growth upregulation. Collectively, data provides valuable insights into unravelling the mechanism of
Thchit42
-mediated crosstalk between morphological and chemical alteration in transgenic plants. This knowledge might create novel opportunities to cultivate fungal-resistant geranium throughout all seasons to fulfil demand. |
doi_str_mv | 10.1007/s00299-024-03233-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153648752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057567143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-1369dbbd9efb378cb9ce607e5bfec17992de14b1d3fd02d09c8d9a7c76155feb3</originalsourceid><addsrcrecordid>eNqFkU1vFSEUhomxsdfqH3BhSNy4GcvHMAxLbayaNKmLmrgjDJyZoZkLV2CuH7--tLdq0oWuSDjP-5LDg9ALSt5QQuRpJoQp1RDWNoQzzpv-EdrQlrOGEf71MdoQyWgjJW2P0dOcrwmpQ9k9Qce8v71VdIN-vUveTT5MeFzDZBacIPtcTLCATXB4t5hQ8JTi9zLjMqe4TjO2MeTiy1r8HnDcQ4Ifu5rLPgYcR3w129mXluEJAmAf8GdYTJpi8Ou2Vpk9xAVCfoaORrNkeH5_nqAv5--vzj42F5cfPp29vWgsF6o0lHfKDYNTMA5c9nZQFjoiQQwjWCqVYg5oO1DHR0eYI8r2ThlpZUeFGGHgJ-j1oXeX4rcVctFbny0sdTOIa9acCt61vRTs_ygRslOi5W1FXz1Ar-OaQl3kjhJd_WBeKXagbIo5Jxj1LvmtST81JfpWoj5I1FWivpOo-xp6eV-9DltwfyK_rVWAH4BcR2GC9Pftf9TeAKgUqgM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057567143</pqid></control><display><type>article</type><title>Bridging fungal resistance and plant growth through constitutive overexpression of Thchit42 gene in Pelargonium graveolens</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Khatoon, Kahkashan ; Warsi, Zafar Iqbal ; Singh, Akanksha ; Singh, Kajal ; Khan, Feroz ; Singh, Palak ; Shukla, Rakesh Kumar ; Verma, Ram Swaroop ; Singh, Munmun K. ; Verma, Sanjeet K. ; Husain, Zakir ; Parween, Gazala ; Singh, Pooja ; Afroz, Shama ; Rahman, Laiq Ur</creator><creatorcontrib>Khatoon, Kahkashan ; Warsi, Zafar Iqbal ; Singh, Akanksha ; Singh, Kajal ; Khan, Feroz ; Singh, Palak ; Shukla, Rakesh Kumar ; Verma, Ram Swaroop ; Singh, Munmun K. ; Verma, Sanjeet K. ; Husain, Zakir ; Parween, Gazala ; Singh, Pooja ; Afroz, Shama ; Rahman, Laiq Ur</creatorcontrib><description>Key message
Thchit42
constitutive expression for fungal resistance showed synchronisation with leaf augmentation and transcriptome analysis revealed the Longifolia and Zinc finger RICESLEEPER gene is responsible for plant growth and development.
Pelargonium graveolens
essential oil possesses significant attributes, known for perfumery and aromatherapy. However, optimal yield and propagation are predominantly hindered by biotic stress. All biotechnological approaches have yet to prove effective in addressing fungal resistance. The current study developed transgenic geranium bridging molecular mechanism of fungal resistance and plant growth by introducing cassette 35S::
Thchit42
. Furthermore, 120 independently putative transformed explants were regenerated on kanamycin fortified medium. Primarily transgenic lines were demonstrated peak pathogenicity and antifungal activity against formidable
Colletotrichum gloeosporioides
and
Fusarium oxysporum
. Additionally, phenotypic analysis revealed ~ 2fold increase in leaf size and ~ 2.1fold enhanced oil content. To elucidate the molecular mechanisms for genotypic cause, de novo transcriptional profiles were analyzed to indicate that the auxin-regulated longifolia gene is accountable for augmentation in leaf size, and zinc finger (ZF) RICESLEEPER attributes growth upregulation. Collectively, data provides valuable insights into unravelling the mechanism of
Thchit42
-mediated crosstalk between morphological and chemical alteration in transgenic plants. This knowledge might create novel opportunities to cultivate fungal-resistant geranium throughout all seasons to fulfil demand.</description><identifier>ISSN: 0721-7714</identifier><identifier>EISSN: 1432-203X</identifier><identifier>DOI: 10.1007/s00299-024-03233-8</identifier><identifier>PMID: 38771491</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Antifungal activity ; antifungal properties ; Aromatherapy ; Biomedical and Life Sciences ; Biotechnology ; biotic stress ; Cell Biology ; Colletotrichum - pathogenicity ; Colletotrichum - physiology ; Disease Resistance - genetics ; Essential oils ; Explants ; Fungi ; Fungicides ; Fusarium - pathogenicity ; Fusarium - physiology ; Fusarium oxysporum ; gene expression ; Gene Expression Regulation, Plant ; genes ; genetically modified organisms ; Geranium - genetics ; Glomerella cingulata ; growth and development ; Kanamycin ; leaf area ; Leaves ; Life Sciences ; Molecular modelling ; Oils, Volatile - metabolism ; Oils, Volatile - pharmacology ; Optimal yield ; Original Article ; Pathogenicity ; Pathogens ; Pelargonium - genetics ; Pelargonium graveolens ; perfumes ; phenotype ; Plant Biochemistry ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Plant growth ; Plant Leaves - genetics ; Plant Leaves - microbiology ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Sciences ; Plants, Genetically Modified ; Propagation ; Synchronism ; transcription (genetics) ; Transcriptomes ; transcriptomics ; Transgenic plants ; Zinc ; zinc finger motif ; Zinc finger proteins</subject><ispartof>Plant cell reports, 2024-06, Vol.43 (6), p.147-147, Article 147</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-1369dbbd9efb378cb9ce607e5bfec17992de14b1d3fd02d09c8d9a7c76155feb3</cites><orcidid>0000-0003-3289-2755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00299-024-03233-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00299-024-03233-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38771491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khatoon, Kahkashan</creatorcontrib><creatorcontrib>Warsi, Zafar Iqbal</creatorcontrib><creatorcontrib>Singh, Akanksha</creatorcontrib><creatorcontrib>Singh, Kajal</creatorcontrib><creatorcontrib>Khan, Feroz</creatorcontrib><creatorcontrib>Singh, Palak</creatorcontrib><creatorcontrib>Shukla, Rakesh Kumar</creatorcontrib><creatorcontrib>Verma, Ram Swaroop</creatorcontrib><creatorcontrib>Singh, Munmun K.</creatorcontrib><creatorcontrib>Verma, Sanjeet K.</creatorcontrib><creatorcontrib>Husain, Zakir</creatorcontrib><creatorcontrib>Parween, Gazala</creatorcontrib><creatorcontrib>Singh, Pooja</creatorcontrib><creatorcontrib>Afroz, Shama</creatorcontrib><creatorcontrib>Rahman, Laiq Ur</creatorcontrib><title>Bridging fungal resistance and plant growth through constitutive overexpression of Thchit42 gene in Pelargonium graveolens</title><title>Plant cell reports</title><addtitle>Plant Cell Rep</addtitle><addtitle>Plant Cell Rep</addtitle><description>Key message
Thchit42
constitutive expression for fungal resistance showed synchronisation with leaf augmentation and transcriptome analysis revealed the Longifolia and Zinc finger RICESLEEPER gene is responsible for plant growth and development.
Pelargonium graveolens
essential oil possesses significant attributes, known for perfumery and aromatherapy. However, optimal yield and propagation are predominantly hindered by biotic stress. All biotechnological approaches have yet to prove effective in addressing fungal resistance. The current study developed transgenic geranium bridging molecular mechanism of fungal resistance and plant growth by introducing cassette 35S::
Thchit42
. Furthermore, 120 independently putative transformed explants were regenerated on kanamycin fortified medium. Primarily transgenic lines were demonstrated peak pathogenicity and antifungal activity against formidable
Colletotrichum gloeosporioides
and
Fusarium oxysporum
. Additionally, phenotypic analysis revealed ~ 2fold increase in leaf size and ~ 2.1fold enhanced oil content. To elucidate the molecular mechanisms for genotypic cause, de novo transcriptional profiles were analyzed to indicate that the auxin-regulated longifolia gene is accountable for augmentation in leaf size, and zinc finger (ZF) RICESLEEPER attributes growth upregulation. Collectively, data provides valuable insights into unravelling the mechanism of
Thchit42
-mediated crosstalk between morphological and chemical alteration in transgenic plants. This knowledge might create novel opportunities to cultivate fungal-resistant geranium throughout all seasons to fulfil demand.</description><subject>Antifungal activity</subject><subject>antifungal properties</subject><subject>Aromatherapy</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>biotic stress</subject><subject>Cell Biology</subject><subject>Colletotrichum - pathogenicity</subject><subject>Colletotrichum - physiology</subject><subject>Disease Resistance - genetics</subject><subject>Essential oils</subject><subject>Explants</subject><subject>Fungi</subject><subject>Fungicides</subject><subject>Fusarium - pathogenicity</subject><subject>Fusarium - physiology</subject><subject>Fusarium oxysporum</subject><subject>gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>genes</subject><subject>genetically modified organisms</subject><subject>Geranium - genetics</subject><subject>Glomerella cingulata</subject><subject>growth and development</subject><subject>Kanamycin</subject><subject>leaf area</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Molecular modelling</subject><subject>Oils, Volatile - metabolism</subject><subject>Oils, Volatile - pharmacology</subject><subject>Optimal yield</subject><subject>Original Article</subject><subject>Pathogenicity</subject><subject>Pathogens</subject><subject>Pelargonium - genetics</subject><subject>Pelargonium graveolens</subject><subject>perfumes</subject><subject>phenotype</subject><subject>Plant Biochemistry</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Plant growth</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - microbiology</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Sciences</subject><subject>Plants, Genetically Modified</subject><subject>Propagation</subject><subject>Synchronism</subject><subject>transcription (genetics)</subject><subject>Transcriptomes</subject><subject>transcriptomics</subject><subject>Transgenic plants</subject><subject>Zinc</subject><subject>zinc finger motif</subject><subject>Zinc finger proteins</subject><issn>0721-7714</issn><issn>1432-203X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1vFSEUhomxsdfqH3BhSNy4GcvHMAxLbayaNKmLmrgjDJyZoZkLV2CuH7--tLdq0oWuSDjP-5LDg9ALSt5QQuRpJoQp1RDWNoQzzpv-EdrQlrOGEf71MdoQyWgjJW2P0dOcrwmpQ9k9Qce8v71VdIN-vUveTT5MeFzDZBacIPtcTLCATXB4t5hQ8JTi9zLjMqe4TjO2MeTiy1r8HnDcQ4Ifu5rLPgYcR3w129mXluEJAmAf8GdYTJpi8Ou2Vpk9xAVCfoaORrNkeH5_nqAv5--vzj42F5cfPp29vWgsF6o0lHfKDYNTMA5c9nZQFjoiQQwjWCqVYg5oO1DHR0eYI8r2ThlpZUeFGGHgJ-j1oXeX4rcVctFbny0sdTOIa9acCt61vRTs_ygRslOi5W1FXz1Ar-OaQl3kjhJd_WBeKXagbIo5Jxj1LvmtST81JfpWoj5I1FWivpOo-xp6eV-9DltwfyK_rVWAH4BcR2GC9Pftf9TeAKgUqgM</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Khatoon, Kahkashan</creator><creator>Warsi, Zafar Iqbal</creator><creator>Singh, Akanksha</creator><creator>Singh, Kajal</creator><creator>Khan, Feroz</creator><creator>Singh, Palak</creator><creator>Shukla, Rakesh Kumar</creator><creator>Verma, Ram Swaroop</creator><creator>Singh, Munmun K.</creator><creator>Verma, Sanjeet K.</creator><creator>Husain, Zakir</creator><creator>Parween, Gazala</creator><creator>Singh, Pooja</creator><creator>Afroz, Shama</creator><creator>Rahman, Laiq Ur</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3289-2755</orcidid></search><sort><creationdate>20240601</creationdate><title>Bridging fungal resistance and plant growth through constitutive overexpression of Thchit42 gene in Pelargonium graveolens</title><author>Khatoon, Kahkashan ; Warsi, Zafar Iqbal ; Singh, Akanksha ; Singh, Kajal ; Khan, Feroz ; Singh, Palak ; Shukla, Rakesh Kumar ; Verma, Ram Swaroop ; Singh, Munmun K. ; Verma, Sanjeet K. ; Husain, Zakir ; Parween, Gazala ; Singh, Pooja ; Afroz, Shama ; Rahman, Laiq Ur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-1369dbbd9efb378cb9ce607e5bfec17992de14b1d3fd02d09c8d9a7c76155feb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antifungal activity</topic><topic>antifungal properties</topic><topic>Aromatherapy</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>biotic stress</topic><topic>Cell Biology</topic><topic>Colletotrichum - pathogenicity</topic><topic>Colletotrichum - physiology</topic><topic>Disease Resistance - genetics</topic><topic>Essential oils</topic><topic>Explants</topic><topic>Fungi</topic><topic>Fungicides</topic><topic>Fusarium - pathogenicity</topic><topic>Fusarium - physiology</topic><topic>Fusarium oxysporum</topic><topic>gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>genes</topic><topic>genetically modified organisms</topic><topic>Geranium - genetics</topic><topic>Glomerella cingulata</topic><topic>growth and development</topic><topic>Kanamycin</topic><topic>leaf area</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Molecular modelling</topic><topic>Oils, Volatile - metabolism</topic><topic>Oils, Volatile - pharmacology</topic><topic>Optimal yield</topic><topic>Original Article</topic><topic>Pathogenicity</topic><topic>Pathogens</topic><topic>Pelargonium - genetics</topic><topic>Pelargonium graveolens</topic><topic>perfumes</topic><topic>phenotype</topic><topic>Plant Biochemistry</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Plant growth</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - microbiology</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Sciences</topic><topic>Plants, Genetically Modified</topic><topic>Propagation</topic><topic>Synchronism</topic><topic>transcription (genetics)</topic><topic>Transcriptomes</topic><topic>transcriptomics</topic><topic>Transgenic plants</topic><topic>Zinc</topic><topic>zinc finger motif</topic><topic>Zinc finger proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khatoon, Kahkashan</creatorcontrib><creatorcontrib>Warsi, Zafar Iqbal</creatorcontrib><creatorcontrib>Singh, Akanksha</creatorcontrib><creatorcontrib>Singh, Kajal</creatorcontrib><creatorcontrib>Khan, Feroz</creatorcontrib><creatorcontrib>Singh, Palak</creatorcontrib><creatorcontrib>Shukla, Rakesh Kumar</creatorcontrib><creatorcontrib>Verma, Ram Swaroop</creatorcontrib><creatorcontrib>Singh, Munmun K.</creatorcontrib><creatorcontrib>Verma, Sanjeet K.</creatorcontrib><creatorcontrib>Husain, Zakir</creatorcontrib><creatorcontrib>Parween, Gazala</creatorcontrib><creatorcontrib>Singh, Pooja</creatorcontrib><creatorcontrib>Afroz, Shama</creatorcontrib><creatorcontrib>Rahman, Laiq Ur</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Plant cell reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khatoon, Kahkashan</au><au>Warsi, Zafar Iqbal</au><au>Singh, Akanksha</au><au>Singh, Kajal</au><au>Khan, Feroz</au><au>Singh, Palak</au><au>Shukla, Rakesh Kumar</au><au>Verma, Ram Swaroop</au><au>Singh, Munmun K.</au><au>Verma, Sanjeet K.</au><au>Husain, Zakir</au><au>Parween, Gazala</au><au>Singh, Pooja</au><au>Afroz, Shama</au><au>Rahman, Laiq Ur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridging fungal resistance and plant growth through constitutive overexpression of Thchit42 gene in Pelargonium graveolens</atitle><jtitle>Plant cell reports</jtitle><stitle>Plant Cell Rep</stitle><addtitle>Plant Cell Rep</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>43</volume><issue>6</issue><spage>147</spage><epage>147</epage><pages>147-147</pages><artnum>147</artnum><issn>0721-7714</issn><eissn>1432-203X</eissn><abstract>Key message
Thchit42
constitutive expression for fungal resistance showed synchronisation with leaf augmentation and transcriptome analysis revealed the Longifolia and Zinc finger RICESLEEPER gene is responsible for plant growth and development.
Pelargonium graveolens
essential oil possesses significant attributes, known for perfumery and aromatherapy. However, optimal yield and propagation are predominantly hindered by biotic stress. All biotechnological approaches have yet to prove effective in addressing fungal resistance. The current study developed transgenic geranium bridging molecular mechanism of fungal resistance and plant growth by introducing cassette 35S::
Thchit42
. Furthermore, 120 independently putative transformed explants were regenerated on kanamycin fortified medium. Primarily transgenic lines were demonstrated peak pathogenicity and antifungal activity against formidable
Colletotrichum gloeosporioides
and
Fusarium oxysporum
. Additionally, phenotypic analysis revealed ~ 2fold increase in leaf size and ~ 2.1fold enhanced oil content. To elucidate the molecular mechanisms for genotypic cause, de novo transcriptional profiles were analyzed to indicate that the auxin-regulated longifolia gene is accountable for augmentation in leaf size, and zinc finger (ZF) RICESLEEPER attributes growth upregulation. Collectively, data provides valuable insights into unravelling the mechanism of
Thchit42
-mediated crosstalk between morphological and chemical alteration in transgenic plants. This knowledge might create novel opportunities to cultivate fungal-resistant geranium throughout all seasons to fulfil demand.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38771491</pmid><doi>10.1007/s00299-024-03233-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3289-2755</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0721-7714 |
ispartof | Plant cell reports, 2024-06, Vol.43 (6), p.147-147, Article 147 |
issn | 0721-7714 1432-203X |
language | eng |
recordid | cdi_proquest_miscellaneous_3153648752 |
source | MEDLINE; SpringerLink Journals |
subjects | Antifungal activity antifungal properties Aromatherapy Biomedical and Life Sciences Biotechnology biotic stress Cell Biology Colletotrichum - pathogenicity Colletotrichum - physiology Disease Resistance - genetics Essential oils Explants Fungi Fungicides Fusarium - pathogenicity Fusarium - physiology Fusarium oxysporum gene expression Gene Expression Regulation, Plant genes genetically modified organisms Geranium - genetics Glomerella cingulata growth and development Kanamycin leaf area Leaves Life Sciences Molecular modelling Oils, Volatile - metabolism Oils, Volatile - pharmacology Optimal yield Original Article Pathogenicity Pathogens Pelargonium - genetics Pelargonium graveolens perfumes phenotype Plant Biochemistry Plant Diseases - genetics Plant Diseases - microbiology Plant growth Plant Leaves - genetics Plant Leaves - microbiology Plant Proteins - genetics Plant Proteins - metabolism Plant Sciences Plants, Genetically Modified Propagation Synchronism transcription (genetics) Transcriptomes transcriptomics Transgenic plants Zinc zinc finger motif Zinc finger proteins |
title | Bridging fungal resistance and plant growth through constitutive overexpression of Thchit42 gene in Pelargonium graveolens |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridging%20fungal%20resistance%20and%20plant%20growth%20through%20constitutive%20overexpression%20of%20Thchit42%20gene%20in%20Pelargonium%20graveolens&rft.jtitle=Plant%20cell%20reports&rft.au=Khatoon,%20Kahkashan&rft.date=2024-06-01&rft.volume=43&rft.issue=6&rft.spage=147&rft.epage=147&rft.pages=147-147&rft.artnum=147&rft.issn=0721-7714&rft.eissn=1432-203X&rft_id=info:doi/10.1007/s00299-024-03233-8&rft_dat=%3Cproquest_cross%3E3057567143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3057567143&rft_id=info:pmid/38771491&rfr_iscdi=true |