Unveiling the potential of (CoFeNiMnCr)3O4 high-entropy oxide synthesized from CoFeNiMnCr high-entropy alloy for efficient oxygen-evolution reaction

Electrochemical water-splitting is a promising green technology for the production of hydrogen. One of the bottlenecks, however, is the oxygen evolution half-reaction (OER), which could be overcome with the development of a suitable electrocatalyst. Recently, non-noble metal, high-entropy oxides (HE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2024-06, Vol.59 (21), p.9189-9207
Hauptverfasser: Božiček, Barbara Ljubec, Hreščak, Jitka, Kušter, Monika, Kovač, Janez, Naglič, Iztok, Markoli, Boštjan, Batič, Barbara Šetina, Šala, Martin, Drev, Sandra, Marinko, Živa, Čeh, Miran, Marinho, Belisa Alcantara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9207
container_issue 21
container_start_page 9189
container_title Journal of materials science
container_volume 59
creator Božiček, Barbara Ljubec
Hreščak, Jitka
Kušter, Monika
Kovač, Janez
Naglič, Iztok
Markoli, Boštjan
Batič, Barbara Šetina
Šala, Martin
Drev, Sandra
Marinko, Živa
Čeh, Miran
Marinho, Belisa Alcantara
description Electrochemical water-splitting is a promising green technology for the production of hydrogen. One of the bottlenecks, however, is the oxygen evolution half-reaction (OER), which could be overcome with the development of a suitable electrocatalyst. Recently, non-noble metal, high-entropy oxides (HEO) have been investigated as potential OER electrocatalysts, but complex synthesis approaches that usually produce the material in powder form limit their wider utilization. Here, an innovative synthesis strategy of formulating a nanostructured (CoFeNiMnCr) 3 O 4 HEO thin film on a CoFeNiMnCr high entropy alloy (HEA) using facile electrochemical and thermal treatment methods is presented. The CoFeNiMnCr HEA serves as exceptional support to be electrochemically treated in an ethylene glycol electrolyte with ammonium fluoride to form a rough and microporous structure with nanopits. The electrochemically treated CoFeNiMnCr HEA surface is more prone to oxidation during a low-temperature thermal treatment, leading to the growth of a spinel (CoFeNiMnCr) 3 O 4 HEO thin film. The (CoFeNiMnCr) 3 O 4 HEO exhibits a superior overpotential of 341 mV at 10 mA cm −2 and a Tafel slope of 50 mV dec −1 along with remarkable long-term stability in alkaline media. The excellent catalytic activity and stability for the OER can serve as a promising platform for the practical utilization of (CoFeNiMnCr) 3 O 4 HEO. Graphical abstract
doi_str_mv 10.1007/s10853-024-09710-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153644892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064801109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-6d056dbfbb2611adacc8e6bcbe4cdd42a3d8b63d7d31c9315705fa3ee295c1593</originalsourceid><addsrcrecordid>eNp9kctuEzEUhi1EJULLC7CyxKYsDMe3uSxRRAGptBu6tjz2mcTVxA72pGJ4Dh4YhyBVsOjKlv19v47OT8hrDu84QPu-cOi0ZCAUg77lwPQzsuK6lUx1IJ-TFYAQTKiGvyAvS7kHAN0KviK_7uIDhinEDZ23SPdpxjgHO9E00st1usKb8DWu81t5q-g2bLasfue0X2j6ETzSssSqlfATPR1z2tFH5V_cTlNa6JgyxXEMLtT3GrFsMDJ8SNNhDinSjNYdLxfkbLRTwVd_z3Nyd_Xx2_ozu7799GX94Zo5qdqZNR5044dxGETDufXWuQ6bwQ2onPdKWOm7oZG-9ZK7XtZ1gB6tRBS9dlz38pxcnnL3OX0_YJnNLhSH02QjpkMxVZGNUl0vKvrmP_Q-HXKs0xkJTV0y53AMFCfK5VRKxtHsc9jZvBgO5liUORVlalHmT1FGV0mepFLhuMH8GP2E9RusGJjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064801109</pqid></control><display><type>article</type><title>Unveiling the potential of (CoFeNiMnCr)3O4 high-entropy oxide synthesized from CoFeNiMnCr high-entropy alloy for efficient oxygen-evolution reaction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Božiček, Barbara Ljubec ; Hreščak, Jitka ; Kušter, Monika ; Kovač, Janez ; Naglič, Iztok ; Markoli, Boštjan ; Batič, Barbara Šetina ; Šala, Martin ; Drev, Sandra ; Marinko, Živa ; Čeh, Miran ; Marinho, Belisa Alcantara</creator><creatorcontrib>Božiček, Barbara Ljubec ; Hreščak, Jitka ; Kušter, Monika ; Kovač, Janez ; Naglič, Iztok ; Markoli, Boštjan ; Batič, Barbara Šetina ; Šala, Martin ; Drev, Sandra ; Marinko, Živa ; Čeh, Miran ; Marinho, Belisa Alcantara</creatorcontrib><description>Electrochemical water-splitting is a promising green technology for the production of hydrogen. One of the bottlenecks, however, is the oxygen evolution half-reaction (OER), which could be overcome with the development of a suitable electrocatalyst. Recently, non-noble metal, high-entropy oxides (HEO) have been investigated as potential OER electrocatalysts, but complex synthesis approaches that usually produce the material in powder form limit their wider utilization. Here, an innovative synthesis strategy of formulating a nanostructured (CoFeNiMnCr) 3 O 4 HEO thin film on a CoFeNiMnCr high entropy alloy (HEA) using facile electrochemical and thermal treatment methods is presented. The CoFeNiMnCr HEA serves as exceptional support to be electrochemically treated in an ethylene glycol electrolyte with ammonium fluoride to form a rough and microporous structure with nanopits. The electrochemically treated CoFeNiMnCr HEA surface is more prone to oxidation during a low-temperature thermal treatment, leading to the growth of a spinel (CoFeNiMnCr) 3 O 4 HEO thin film. The (CoFeNiMnCr) 3 O 4 HEO exhibits a superior overpotential of 341 mV at 10 mA cm −2 and a Tafel slope of 50 mV dec −1 along with remarkable long-term stability in alkaline media. The excellent catalytic activity and stability for the OER can serve as a promising platform for the practical utilization of (CoFeNiMnCr) 3 O 4 HEO. Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-024-09710-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>alloys ; ammonium ; Catalytic activity ; Characterization and Evaluation of Materials ; Chemical Routes to Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Electrocatalysts ; electrochemistry ; Entropy ; Ethylene glycol ; films (materials) ; Heat treatment ; High entropy alloys ; hydrogen ; Hydrogen production ; Low temperature ; Materials Science ; Noble metals ; Oxidation ; Oxygen evolution reactions ; oxygen production ; Polymer Sciences ; porous media ; Solid Mechanics ; Stability ; sustainable technology ; Thin films ; Water splitting</subject><ispartof>Journal of materials science, 2024-06, Vol.59 (21), p.9189-9207</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c347t-6d056dbfbb2611adacc8e6bcbe4cdd42a3d8b63d7d31c9315705fa3ee295c1593</cites><orcidid>0000-0002-6707-3437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-024-09710-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-024-09710-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Božiček, Barbara Ljubec</creatorcontrib><creatorcontrib>Hreščak, Jitka</creatorcontrib><creatorcontrib>Kušter, Monika</creatorcontrib><creatorcontrib>Kovač, Janez</creatorcontrib><creatorcontrib>Naglič, Iztok</creatorcontrib><creatorcontrib>Markoli, Boštjan</creatorcontrib><creatorcontrib>Batič, Barbara Šetina</creatorcontrib><creatorcontrib>Šala, Martin</creatorcontrib><creatorcontrib>Drev, Sandra</creatorcontrib><creatorcontrib>Marinko, Živa</creatorcontrib><creatorcontrib>Čeh, Miran</creatorcontrib><creatorcontrib>Marinho, Belisa Alcantara</creatorcontrib><title>Unveiling the potential of (CoFeNiMnCr)3O4 high-entropy oxide synthesized from CoFeNiMnCr high-entropy alloy for efficient oxygen-evolution reaction</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Electrochemical water-splitting is a promising green technology for the production of hydrogen. One of the bottlenecks, however, is the oxygen evolution half-reaction (OER), which could be overcome with the development of a suitable electrocatalyst. Recently, non-noble metal, high-entropy oxides (HEO) have been investigated as potential OER electrocatalysts, but complex synthesis approaches that usually produce the material in powder form limit their wider utilization. Here, an innovative synthesis strategy of formulating a nanostructured (CoFeNiMnCr) 3 O 4 HEO thin film on a CoFeNiMnCr high entropy alloy (HEA) using facile electrochemical and thermal treatment methods is presented. The CoFeNiMnCr HEA serves as exceptional support to be electrochemically treated in an ethylene glycol electrolyte with ammonium fluoride to form a rough and microporous structure with nanopits. The electrochemically treated CoFeNiMnCr HEA surface is more prone to oxidation during a low-temperature thermal treatment, leading to the growth of a spinel (CoFeNiMnCr) 3 O 4 HEO thin film. The (CoFeNiMnCr) 3 O 4 HEO exhibits a superior overpotential of 341 mV at 10 mA cm −2 and a Tafel slope of 50 mV dec −1 along with remarkable long-term stability in alkaline media. The excellent catalytic activity and stability for the OER can serve as a promising platform for the practical utilization of (CoFeNiMnCr) 3 O 4 HEO. Graphical abstract</description><subject>alloys</subject><subject>ammonium</subject><subject>Catalytic activity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical Routes to Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Electrocatalysts</subject><subject>electrochemistry</subject><subject>Entropy</subject><subject>Ethylene glycol</subject><subject>films (materials)</subject><subject>Heat treatment</subject><subject>High entropy alloys</subject><subject>hydrogen</subject><subject>Hydrogen production</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Noble metals</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>oxygen production</subject><subject>Polymer Sciences</subject><subject>porous media</subject><subject>Solid Mechanics</subject><subject>Stability</subject><subject>sustainable technology</subject><subject>Thin films</subject><subject>Water splitting</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kctuEzEUhi1EJULLC7CyxKYsDMe3uSxRRAGptBu6tjz2mcTVxA72pGJ4Dh4YhyBVsOjKlv19v47OT8hrDu84QPu-cOi0ZCAUg77lwPQzsuK6lUx1IJ-TFYAQTKiGvyAvS7kHAN0KviK_7uIDhinEDZ23SPdpxjgHO9E00st1usKb8DWu81t5q-g2bLasfue0X2j6ETzSssSqlfATPR1z2tFH5V_cTlNa6JgyxXEMLtT3GrFsMDJ8SNNhDinSjNYdLxfkbLRTwVd_z3Nyd_Xx2_ozu7799GX94Zo5qdqZNR5044dxGETDufXWuQ6bwQ2onPdKWOm7oZG-9ZK7XtZ1gB6tRBS9dlz38pxcnnL3OX0_YJnNLhSH02QjpkMxVZGNUl0vKvrmP_Q-HXKs0xkJTV0y53AMFCfK5VRKxtHsc9jZvBgO5liUORVlalHmT1FGV0mepFLhuMH8GP2E9RusGJjE</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Božiček, Barbara Ljubec</creator><creator>Hreščak, Jitka</creator><creator>Kušter, Monika</creator><creator>Kovač, Janez</creator><creator>Naglič, Iztok</creator><creator>Markoli, Boštjan</creator><creator>Batič, Barbara Šetina</creator><creator>Šala, Martin</creator><creator>Drev, Sandra</creator><creator>Marinko, Živa</creator><creator>Čeh, Miran</creator><creator>Marinho, Belisa Alcantara</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-6707-3437</orcidid></search><sort><creationdate>20240601</creationdate><title>Unveiling the potential of (CoFeNiMnCr)3O4 high-entropy oxide synthesized from CoFeNiMnCr high-entropy alloy for efficient oxygen-evolution reaction</title><author>Božiček, Barbara Ljubec ; Hreščak, Jitka ; Kušter, Monika ; Kovač, Janez ; Naglič, Iztok ; Markoli, Boštjan ; Batič, Barbara Šetina ; Šala, Martin ; Drev, Sandra ; Marinko, Živa ; Čeh, Miran ; Marinho, Belisa Alcantara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-6d056dbfbb2611adacc8e6bcbe4cdd42a3d8b63d7d31c9315705fa3ee295c1593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>alloys</topic><topic>ammonium</topic><topic>Catalytic activity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical Routes to Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Electrocatalysts</topic><topic>electrochemistry</topic><topic>Entropy</topic><topic>Ethylene glycol</topic><topic>films (materials)</topic><topic>Heat treatment</topic><topic>High entropy alloys</topic><topic>hydrogen</topic><topic>Hydrogen production</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Noble metals</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>oxygen production</topic><topic>Polymer Sciences</topic><topic>porous media</topic><topic>Solid Mechanics</topic><topic>Stability</topic><topic>sustainable technology</topic><topic>Thin films</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Božiček, Barbara Ljubec</creatorcontrib><creatorcontrib>Hreščak, Jitka</creatorcontrib><creatorcontrib>Kušter, Monika</creatorcontrib><creatorcontrib>Kovač, Janez</creatorcontrib><creatorcontrib>Naglič, Iztok</creatorcontrib><creatorcontrib>Markoli, Boštjan</creatorcontrib><creatorcontrib>Batič, Barbara Šetina</creatorcontrib><creatorcontrib>Šala, Martin</creatorcontrib><creatorcontrib>Drev, Sandra</creatorcontrib><creatorcontrib>Marinko, Živa</creatorcontrib><creatorcontrib>Čeh, Miran</creatorcontrib><creatorcontrib>Marinho, Belisa Alcantara</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Božiček, Barbara Ljubec</au><au>Hreščak, Jitka</au><au>Kušter, Monika</au><au>Kovač, Janez</au><au>Naglič, Iztok</au><au>Markoli, Boštjan</au><au>Batič, Barbara Šetina</au><au>Šala, Martin</au><au>Drev, Sandra</au><au>Marinko, Živa</au><au>Čeh, Miran</au><au>Marinho, Belisa Alcantara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling the potential of (CoFeNiMnCr)3O4 high-entropy oxide synthesized from CoFeNiMnCr high-entropy alloy for efficient oxygen-evolution reaction</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>59</volume><issue>21</issue><spage>9189</spage><epage>9207</epage><pages>9189-9207</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Electrochemical water-splitting is a promising green technology for the production of hydrogen. One of the bottlenecks, however, is the oxygen evolution half-reaction (OER), which could be overcome with the development of a suitable electrocatalyst. Recently, non-noble metal, high-entropy oxides (HEO) have been investigated as potential OER electrocatalysts, but complex synthesis approaches that usually produce the material in powder form limit their wider utilization. Here, an innovative synthesis strategy of formulating a nanostructured (CoFeNiMnCr) 3 O 4 HEO thin film on a CoFeNiMnCr high entropy alloy (HEA) using facile electrochemical and thermal treatment methods is presented. The CoFeNiMnCr HEA serves as exceptional support to be electrochemically treated in an ethylene glycol electrolyte with ammonium fluoride to form a rough and microporous structure with nanopits. The electrochemically treated CoFeNiMnCr HEA surface is more prone to oxidation during a low-temperature thermal treatment, leading to the growth of a spinel (CoFeNiMnCr) 3 O 4 HEO thin film. The (CoFeNiMnCr) 3 O 4 HEO exhibits a superior overpotential of 341 mV at 10 mA cm −2 and a Tafel slope of 50 mV dec −1 along with remarkable long-term stability in alkaline media. The excellent catalytic activity and stability for the OER can serve as a promising platform for the practical utilization of (CoFeNiMnCr) 3 O 4 HEO. Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-024-09710-5</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6707-3437</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2024-06, Vol.59 (21), p.9189-9207
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_3153644892
source SpringerLink Journals - AutoHoldings
subjects alloys
ammonium
Catalytic activity
Characterization and Evaluation of Materials
Chemical Routes to Materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Electrocatalysts
electrochemistry
Entropy
Ethylene glycol
films (materials)
Heat treatment
High entropy alloys
hydrogen
Hydrogen production
Low temperature
Materials Science
Noble metals
Oxidation
Oxygen evolution reactions
oxygen production
Polymer Sciences
porous media
Solid Mechanics
Stability
sustainable technology
Thin films
Water splitting
title Unveiling the potential of (CoFeNiMnCr)3O4 high-entropy oxide synthesized from CoFeNiMnCr high-entropy alloy for efficient oxygen-evolution reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A41%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20the%20potential%20of%20(CoFeNiMnCr)3O4%20high-entropy%20oxide%20synthesized%20from%20CoFeNiMnCr%20high-entropy%20alloy%20for%20efficient%20oxygen-evolution%20reaction&rft.jtitle=Journal%20of%20materials%20science&rft.au=Bo%C5%BEi%C4%8Dek,%20Barbara%20Ljubec&rft.date=2024-06-01&rft.volume=59&rft.issue=21&rft.spage=9189&rft.epage=9207&rft.pages=9189-9207&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-024-09710-5&rft_dat=%3Cproquest_cross%3E3064801109%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064801109&rft_id=info:pmid/&rfr_iscdi=true