Unveiling the potential of (CoFeNiMnCr)3O4 high-entropy oxide synthesized from CoFeNiMnCr high-entropy alloy for efficient oxygen-evolution reaction
Electrochemical water-splitting is a promising green technology for the production of hydrogen. One of the bottlenecks, however, is the oxygen evolution half-reaction (OER), which could be overcome with the development of a suitable electrocatalyst. Recently, non-noble metal, high-entropy oxides (HE...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2024-06, Vol.59 (21), p.9189-9207 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9207 |
---|---|
container_issue | 21 |
container_start_page | 9189 |
container_title | Journal of materials science |
container_volume | 59 |
creator | Božiček, Barbara Ljubec Hreščak, Jitka Kušter, Monika Kovač, Janez Naglič, Iztok Markoli, Boštjan Batič, Barbara Šetina Šala, Martin Drev, Sandra Marinko, Živa Čeh, Miran Marinho, Belisa Alcantara |
description | Electrochemical water-splitting is a promising green technology for the production of hydrogen. One of the bottlenecks, however, is the oxygen evolution half-reaction (OER), which could be overcome with the development of a suitable electrocatalyst. Recently, non-noble metal, high-entropy oxides (HEO) have been investigated as potential OER electrocatalysts, but complex synthesis approaches that usually produce the material in powder form limit their wider utilization. Here, an innovative synthesis strategy of formulating a nanostructured (CoFeNiMnCr)
3
O
4
HEO thin film on a CoFeNiMnCr high entropy alloy (HEA) using facile electrochemical and thermal treatment methods is presented. The CoFeNiMnCr HEA serves as exceptional support to be electrochemically treated in an ethylene glycol electrolyte with ammonium fluoride to form a rough and microporous structure with nanopits. The electrochemically treated CoFeNiMnCr HEA surface is more prone to oxidation during a low-temperature thermal treatment, leading to the growth of a spinel (CoFeNiMnCr)
3
O
4
HEO thin film. The (CoFeNiMnCr)
3
O
4
HEO exhibits a superior overpotential of 341 mV at 10 mA cm
−2
and a Tafel slope of 50 mV dec
−1
along with remarkable long-term stability in alkaline media. The excellent catalytic activity and stability for the OER can serve as a promising platform for the practical utilization of (CoFeNiMnCr)
3
O
4
HEO.
Graphical abstract |
doi_str_mv | 10.1007/s10853-024-09710-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153644892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064801109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-6d056dbfbb2611adacc8e6bcbe4cdd42a3d8b63d7d31c9315705fa3ee295c1593</originalsourceid><addsrcrecordid>eNp9kctuEzEUhi1EJULLC7CyxKYsDMe3uSxRRAGptBu6tjz2mcTVxA72pGJ4Dh4YhyBVsOjKlv19v47OT8hrDu84QPu-cOi0ZCAUg77lwPQzsuK6lUx1IJ-TFYAQTKiGvyAvS7kHAN0KviK_7uIDhinEDZ23SPdpxjgHO9E00st1usKb8DWu81t5q-g2bLasfue0X2j6ETzSssSqlfATPR1z2tFH5V_cTlNa6JgyxXEMLtT3GrFsMDJ8SNNhDinSjNYdLxfkbLRTwVd_z3Nyd_Xx2_ozu7799GX94Zo5qdqZNR5044dxGETDufXWuQ6bwQ2onPdKWOm7oZG-9ZK7XtZ1gB6tRBS9dlz38pxcnnL3OX0_YJnNLhSH02QjpkMxVZGNUl0vKvrmP_Q-HXKs0xkJTV0y53AMFCfK5VRKxtHsc9jZvBgO5liUORVlalHmT1FGV0mepFLhuMH8GP2E9RusGJjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064801109</pqid></control><display><type>article</type><title>Unveiling the potential of (CoFeNiMnCr)3O4 high-entropy oxide synthesized from CoFeNiMnCr high-entropy alloy for efficient oxygen-evolution reaction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Božiček, Barbara Ljubec ; Hreščak, Jitka ; Kušter, Monika ; Kovač, Janez ; Naglič, Iztok ; Markoli, Boštjan ; Batič, Barbara Šetina ; Šala, Martin ; Drev, Sandra ; Marinko, Živa ; Čeh, Miran ; Marinho, Belisa Alcantara</creator><creatorcontrib>Božiček, Barbara Ljubec ; Hreščak, Jitka ; Kušter, Monika ; Kovač, Janez ; Naglič, Iztok ; Markoli, Boštjan ; Batič, Barbara Šetina ; Šala, Martin ; Drev, Sandra ; Marinko, Živa ; Čeh, Miran ; Marinho, Belisa Alcantara</creatorcontrib><description>Electrochemical water-splitting is a promising green technology for the production of hydrogen. One of the bottlenecks, however, is the oxygen evolution half-reaction (OER), which could be overcome with the development of a suitable electrocatalyst. Recently, non-noble metal, high-entropy oxides (HEO) have been investigated as potential OER electrocatalysts, but complex synthesis approaches that usually produce the material in powder form limit their wider utilization. Here, an innovative synthesis strategy of formulating a nanostructured (CoFeNiMnCr)
3
O
4
HEO thin film on a CoFeNiMnCr high entropy alloy (HEA) using facile electrochemical and thermal treatment methods is presented. The CoFeNiMnCr HEA serves as exceptional support to be electrochemically treated in an ethylene glycol electrolyte with ammonium fluoride to form a rough and microporous structure with nanopits. The electrochemically treated CoFeNiMnCr HEA surface is more prone to oxidation during a low-temperature thermal treatment, leading to the growth of a spinel (CoFeNiMnCr)
3
O
4
HEO thin film. The (CoFeNiMnCr)
3
O
4
HEO exhibits a superior overpotential of 341 mV at 10 mA cm
−2
and a Tafel slope of 50 mV dec
−1
along with remarkable long-term stability in alkaline media. The excellent catalytic activity and stability for the OER can serve as a promising platform for the practical utilization of (CoFeNiMnCr)
3
O
4
HEO.
Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-024-09710-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>alloys ; ammonium ; Catalytic activity ; Characterization and Evaluation of Materials ; Chemical Routes to Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Electrocatalysts ; electrochemistry ; Entropy ; Ethylene glycol ; films (materials) ; Heat treatment ; High entropy alloys ; hydrogen ; Hydrogen production ; Low temperature ; Materials Science ; Noble metals ; Oxidation ; Oxygen evolution reactions ; oxygen production ; Polymer Sciences ; porous media ; Solid Mechanics ; Stability ; sustainable technology ; Thin films ; Water splitting</subject><ispartof>Journal of materials science, 2024-06, Vol.59 (21), p.9189-9207</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c347t-6d056dbfbb2611adacc8e6bcbe4cdd42a3d8b63d7d31c9315705fa3ee295c1593</cites><orcidid>0000-0002-6707-3437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-024-09710-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-024-09710-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Božiček, Barbara Ljubec</creatorcontrib><creatorcontrib>Hreščak, Jitka</creatorcontrib><creatorcontrib>Kušter, Monika</creatorcontrib><creatorcontrib>Kovač, Janez</creatorcontrib><creatorcontrib>Naglič, Iztok</creatorcontrib><creatorcontrib>Markoli, Boštjan</creatorcontrib><creatorcontrib>Batič, Barbara Šetina</creatorcontrib><creatorcontrib>Šala, Martin</creatorcontrib><creatorcontrib>Drev, Sandra</creatorcontrib><creatorcontrib>Marinko, Živa</creatorcontrib><creatorcontrib>Čeh, Miran</creatorcontrib><creatorcontrib>Marinho, Belisa Alcantara</creatorcontrib><title>Unveiling the potential of (CoFeNiMnCr)3O4 high-entropy oxide synthesized from CoFeNiMnCr high-entropy alloy for efficient oxygen-evolution reaction</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Electrochemical water-splitting is a promising green technology for the production of hydrogen. One of the bottlenecks, however, is the oxygen evolution half-reaction (OER), which could be overcome with the development of a suitable electrocatalyst. Recently, non-noble metal, high-entropy oxides (HEO) have been investigated as potential OER electrocatalysts, but complex synthesis approaches that usually produce the material in powder form limit their wider utilization. Here, an innovative synthesis strategy of formulating a nanostructured (CoFeNiMnCr)
3
O
4
HEO thin film on a CoFeNiMnCr high entropy alloy (HEA) using facile electrochemical and thermal treatment methods is presented. The CoFeNiMnCr HEA serves as exceptional support to be electrochemically treated in an ethylene glycol electrolyte with ammonium fluoride to form a rough and microporous structure with nanopits. The electrochemically treated CoFeNiMnCr HEA surface is more prone to oxidation during a low-temperature thermal treatment, leading to the growth of a spinel (CoFeNiMnCr)
3
O
4
HEO thin film. The (CoFeNiMnCr)
3
O
4
HEO exhibits a superior overpotential of 341 mV at 10 mA cm
−2
and a Tafel slope of 50 mV dec
−1
along with remarkable long-term stability in alkaline media. The excellent catalytic activity and stability for the OER can serve as a promising platform for the practical utilization of (CoFeNiMnCr)
3
O
4
HEO.
Graphical abstract</description><subject>alloys</subject><subject>ammonium</subject><subject>Catalytic activity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical Routes to Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Electrocatalysts</subject><subject>electrochemistry</subject><subject>Entropy</subject><subject>Ethylene glycol</subject><subject>films (materials)</subject><subject>Heat treatment</subject><subject>High entropy alloys</subject><subject>hydrogen</subject><subject>Hydrogen production</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Noble metals</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>oxygen production</subject><subject>Polymer Sciences</subject><subject>porous media</subject><subject>Solid Mechanics</subject><subject>Stability</subject><subject>sustainable technology</subject><subject>Thin films</subject><subject>Water splitting</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kctuEzEUhi1EJULLC7CyxKYsDMe3uSxRRAGptBu6tjz2mcTVxA72pGJ4Dh4YhyBVsOjKlv19v47OT8hrDu84QPu-cOi0ZCAUg77lwPQzsuK6lUx1IJ-TFYAQTKiGvyAvS7kHAN0KviK_7uIDhinEDZ23SPdpxjgHO9E00st1usKb8DWu81t5q-g2bLasfue0X2j6ETzSssSqlfATPR1z2tFH5V_cTlNa6JgyxXEMLtT3GrFsMDJ8SNNhDinSjNYdLxfkbLRTwVd_z3Nyd_Xx2_ozu7799GX94Zo5qdqZNR5044dxGETDufXWuQ6bwQ2onPdKWOm7oZG-9ZK7XtZ1gB6tRBS9dlz38pxcnnL3OX0_YJnNLhSH02QjpkMxVZGNUl0vKvrmP_Q-HXKs0xkJTV0y53AMFCfK5VRKxtHsc9jZvBgO5liUORVlalHmT1FGV0mepFLhuMH8GP2E9RusGJjE</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Božiček, Barbara Ljubec</creator><creator>Hreščak, Jitka</creator><creator>Kušter, Monika</creator><creator>Kovač, Janez</creator><creator>Naglič, Iztok</creator><creator>Markoli, Boštjan</creator><creator>Batič, Barbara Šetina</creator><creator>Šala, Martin</creator><creator>Drev, Sandra</creator><creator>Marinko, Živa</creator><creator>Čeh, Miran</creator><creator>Marinho, Belisa Alcantara</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-6707-3437</orcidid></search><sort><creationdate>20240601</creationdate><title>Unveiling the potential of (CoFeNiMnCr)3O4 high-entropy oxide synthesized from CoFeNiMnCr high-entropy alloy for efficient oxygen-evolution reaction</title><author>Božiček, Barbara Ljubec ; Hreščak, Jitka ; Kušter, Monika ; Kovač, Janez ; Naglič, Iztok ; Markoli, Boštjan ; Batič, Barbara Šetina ; Šala, Martin ; Drev, Sandra ; Marinko, Živa ; Čeh, Miran ; Marinho, Belisa Alcantara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-6d056dbfbb2611adacc8e6bcbe4cdd42a3d8b63d7d31c9315705fa3ee295c1593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>alloys</topic><topic>ammonium</topic><topic>Catalytic activity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical Routes to Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Electrocatalysts</topic><topic>electrochemistry</topic><topic>Entropy</topic><topic>Ethylene glycol</topic><topic>films (materials)</topic><topic>Heat treatment</topic><topic>High entropy alloys</topic><topic>hydrogen</topic><topic>Hydrogen production</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Noble metals</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>oxygen production</topic><topic>Polymer Sciences</topic><topic>porous media</topic><topic>Solid Mechanics</topic><topic>Stability</topic><topic>sustainable technology</topic><topic>Thin films</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Božiček, Barbara Ljubec</creatorcontrib><creatorcontrib>Hreščak, Jitka</creatorcontrib><creatorcontrib>Kušter, Monika</creatorcontrib><creatorcontrib>Kovač, Janez</creatorcontrib><creatorcontrib>Naglič, Iztok</creatorcontrib><creatorcontrib>Markoli, Boštjan</creatorcontrib><creatorcontrib>Batič, Barbara Šetina</creatorcontrib><creatorcontrib>Šala, Martin</creatorcontrib><creatorcontrib>Drev, Sandra</creatorcontrib><creatorcontrib>Marinko, Živa</creatorcontrib><creatorcontrib>Čeh, Miran</creatorcontrib><creatorcontrib>Marinho, Belisa Alcantara</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Božiček, Barbara Ljubec</au><au>Hreščak, Jitka</au><au>Kušter, Monika</au><au>Kovač, Janez</au><au>Naglič, Iztok</au><au>Markoli, Boštjan</au><au>Batič, Barbara Šetina</au><au>Šala, Martin</au><au>Drev, Sandra</au><au>Marinko, Živa</au><au>Čeh, Miran</au><au>Marinho, Belisa Alcantara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling the potential of (CoFeNiMnCr)3O4 high-entropy oxide synthesized from CoFeNiMnCr high-entropy alloy for efficient oxygen-evolution reaction</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>59</volume><issue>21</issue><spage>9189</spage><epage>9207</epage><pages>9189-9207</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Electrochemical water-splitting is a promising green technology for the production of hydrogen. One of the bottlenecks, however, is the oxygen evolution half-reaction (OER), which could be overcome with the development of a suitable electrocatalyst. Recently, non-noble metal, high-entropy oxides (HEO) have been investigated as potential OER electrocatalysts, but complex synthesis approaches that usually produce the material in powder form limit their wider utilization. Here, an innovative synthesis strategy of formulating a nanostructured (CoFeNiMnCr)
3
O
4
HEO thin film on a CoFeNiMnCr high entropy alloy (HEA) using facile electrochemical and thermal treatment methods is presented. The CoFeNiMnCr HEA serves as exceptional support to be electrochemically treated in an ethylene glycol electrolyte with ammonium fluoride to form a rough and microporous structure with nanopits. The electrochemically treated CoFeNiMnCr HEA surface is more prone to oxidation during a low-temperature thermal treatment, leading to the growth of a spinel (CoFeNiMnCr)
3
O
4
HEO thin film. The (CoFeNiMnCr)
3
O
4
HEO exhibits a superior overpotential of 341 mV at 10 mA cm
−2
and a Tafel slope of 50 mV dec
−1
along with remarkable long-term stability in alkaline media. The excellent catalytic activity and stability for the OER can serve as a promising platform for the practical utilization of (CoFeNiMnCr)
3
O
4
HEO.
Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-024-09710-5</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6707-3437</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2024-06, Vol.59 (21), p.9189-9207 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153644892 |
source | SpringerLink Journals - AutoHoldings |
subjects | alloys ammonium Catalytic activity Characterization and Evaluation of Materials Chemical Routes to Materials Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Electrocatalysts electrochemistry Entropy Ethylene glycol films (materials) Heat treatment High entropy alloys hydrogen Hydrogen production Low temperature Materials Science Noble metals Oxidation Oxygen evolution reactions oxygen production Polymer Sciences porous media Solid Mechanics Stability sustainable technology Thin films Water splitting |
title | Unveiling the potential of (CoFeNiMnCr)3O4 high-entropy oxide synthesized from CoFeNiMnCr high-entropy alloy for efficient oxygen-evolution reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A41%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20the%20potential%20of%20(CoFeNiMnCr)3O4%20high-entropy%20oxide%20synthesized%20from%20CoFeNiMnCr%20high-entropy%20alloy%20for%20efficient%20oxygen-evolution%20reaction&rft.jtitle=Journal%20of%20materials%20science&rft.au=Bo%C5%BEi%C4%8Dek,%20Barbara%20Ljubec&rft.date=2024-06-01&rft.volume=59&rft.issue=21&rft.spage=9189&rft.epage=9207&rft.pages=9189-9207&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-024-09710-5&rft_dat=%3Cproquest_cross%3E3064801109%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064801109&rft_id=info:pmid/&rfr_iscdi=true |