Characterization of bacterial cellulose produced by the KomEt strain isolated from a kombucha SCOBY

Bacterial cellulose (BC) is gaining interest, due to its actual and potential applications in the biomedical, cosmetics and textile industries. In this study, mechanical, thermal, and chemical properties of BC produced from a novel strain, isolated from a kombucha symbiotic culture of bacteria and y...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biocatalysis and agricultural biotechnology 2024-06, Vol.58, p.103172, Article 103172
Hauptverfasser: Chaussé, Jérémie, Girard, Vincent-Daniel, Perron, Théotime, Challut, Tamara, Vermette, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103172
container_title Biocatalysis and agricultural biotechnology
container_volume 58
creator Chaussé, Jérémie
Girard, Vincent-Daniel
Perron, Théotime
Challut, Tamara
Vermette, Patrick
description Bacterial cellulose (BC) is gaining interest, due to its actual and potential applications in the biomedical, cosmetics and textile industries. In this study, mechanical, thermal, and chemical properties of BC produced from a novel strain, isolated from a kombucha symbiotic culture of bacteria and yeast (SCOBY), were evaluated. The highest obtained yields with this strain, after a 10-day fermentation, were 496 ± 14 g/L (native hydrated) and 19 ± 1 g/L (dry). Compression, including relaxation, and traction tests were performed on BC membranes in a hydrated state. The tested material revealed a 3-phase compression behaviour with a compression modulus of 235 ± 50 Pa. In terms of relaxation in water, BC membranes showed plastic deformation past 50 % compression. Regarding BC membrane under traction, analysis showed a 1090 ± 410 kPa Young Modulus, a 50 ± 10 % Elongation at Break and a 270 ± 80 kPa Ultimate Tensile Strength (UTS). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) indicated that BC begins its degradation around 290 °C. Fourier-Transform Infrared spectroscopy (FTIR) of freeze-dried BC membranes confirmed the obtained biofilm to be BC. The results of this study provide valuable information on the potential applications of BC membranes in different industries including textile, biomedical and as a low-cost alternative to some synthetic polymers. •High yield of bacterial cellulose with a novel strain from Kombucha.•Hydrated bacterial cellulose mechanical properties evaluated.•Degradation temperature of bacterial cellulose obtained with DSC and TGA.•Methodology to characterize bacterial cellulose through compression and traction.
doi_str_mv 10.1016/j.bcab.2024.103172
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153644472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1878818124001567</els_id><sourcerecordid>3153644472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-fd8cbfecc9a68b2c6160330a24a2cea179f092e45b8d045df230c41cab2ea6d23</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhisEEtPYH-CUI5eOJE3bTOIC1fgQk3YADpwiN3W1jLYZSYo0fj2tyoETvtiy_Vp-nyi6ZHTJKMuu98tSQ7nklIuhkbCcn0QzJnMZSybZ6Z_6PFp4v6dDZDTlUswiXezAgQ7ozDcEYztia1JODWiIxqbpG-uRHJyteo0VKY8k7JA823YdiA8OTEeMtw2EYVg72xIgH7Yte70D8lJs794vorMaGo-L3zyP3u7Xr8VjvNk-PBW3m1gnXIa4rqQua9R6BZksuc5YRpOEAhfANQLLVzVdcRRpKSsq0qrmCdWCDdY5QlbxZB5dTXeHXz979EG1xo8OoEPbe5WwNMmEEPm4yqdV7az3Dmt1cKYFd1SMqhGq2qsRqhqhqgnqILqZRDiY-DLolNcGuwGKcaiDqqz5T_4DQyCAiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153644472</pqid></control><display><type>article</type><title>Characterization of bacterial cellulose produced by the KomEt strain isolated from a kombucha SCOBY</title><source>Alma/SFX Local Collection</source><creator>Chaussé, Jérémie ; Girard, Vincent-Daniel ; Perron, Théotime ; Challut, Tamara ; Vermette, Patrick</creator><creatorcontrib>Chaussé, Jérémie ; Girard, Vincent-Daniel ; Perron, Théotime ; Challut, Tamara ; Vermette, Patrick</creatorcontrib><description>Bacterial cellulose (BC) is gaining interest, due to its actual and potential applications in the biomedical, cosmetics and textile industries. In this study, mechanical, thermal, and chemical properties of BC produced from a novel strain, isolated from a kombucha symbiotic culture of bacteria and yeast (SCOBY), were evaluated. The highest obtained yields with this strain, after a 10-day fermentation, were 496 ± 14 g/L (native hydrated) and 19 ± 1 g/L (dry). Compression, including relaxation, and traction tests were performed on BC membranes in a hydrated state. The tested material revealed a 3-phase compression behaviour with a compression modulus of 235 ± 50 Pa. In terms of relaxation in water, BC membranes showed plastic deformation past 50 % compression. Regarding BC membrane under traction, analysis showed a 1090 ± 410 kPa Young Modulus, a 50 ± 10 % Elongation at Break and a 270 ± 80 kPa Ultimate Tensile Strength (UTS). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) indicated that BC begins its degradation around 290 °C. Fourier-Transform Infrared spectroscopy (FTIR) of freeze-dried BC membranes confirmed the obtained biofilm to be BC. The results of this study provide valuable information on the potential applications of BC membranes in different industries including textile, biomedical and as a low-cost alternative to some synthetic polymers. •High yield of bacterial cellulose with a novel strain from Kombucha.•Hydrated bacterial cellulose mechanical properties evaluated.•Degradation temperature of bacterial cellulose obtained with DSC and TGA.•Methodology to characterize bacterial cellulose through compression and traction.</description><identifier>ISSN: 1878-8181</identifier><identifier>EISSN: 1878-8181</identifier><identifier>DOI: 10.1016/j.bcab.2024.103172</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>agricultural biotechnology ; Bacterial cellulose ; biocatalysis ; biofilm ; Biomaterials ; calorimetry ; cellulose ; Co-culture ; cosmetics ; fabrics ; fermentation ; Fourier transform infrared spectroscopy ; freeze drying ; Hydrogel ; kombucha ; Mechanical and thermal properties ; plastic deformation ; thermogravimetry ; yeasts</subject><ispartof>Biocatalysis and agricultural biotechnology, 2024-06, Vol.58, p.103172, Article 103172</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c328t-fd8cbfecc9a68b2c6160330a24a2cea179f092e45b8d045df230c41cab2ea6d23</cites><orcidid>0000-0001-6659-3695 ; 0009-0001-5453-8637 ; 0009-0001-8445-6835</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chaussé, Jérémie</creatorcontrib><creatorcontrib>Girard, Vincent-Daniel</creatorcontrib><creatorcontrib>Perron, Théotime</creatorcontrib><creatorcontrib>Challut, Tamara</creatorcontrib><creatorcontrib>Vermette, Patrick</creatorcontrib><title>Characterization of bacterial cellulose produced by the KomEt strain isolated from a kombucha SCOBY</title><title>Biocatalysis and agricultural biotechnology</title><description>Bacterial cellulose (BC) is gaining interest, due to its actual and potential applications in the biomedical, cosmetics and textile industries. In this study, mechanical, thermal, and chemical properties of BC produced from a novel strain, isolated from a kombucha symbiotic culture of bacteria and yeast (SCOBY), were evaluated. The highest obtained yields with this strain, after a 10-day fermentation, were 496 ± 14 g/L (native hydrated) and 19 ± 1 g/L (dry). Compression, including relaxation, and traction tests were performed on BC membranes in a hydrated state. The tested material revealed a 3-phase compression behaviour with a compression modulus of 235 ± 50 Pa. In terms of relaxation in water, BC membranes showed plastic deformation past 50 % compression. Regarding BC membrane under traction, analysis showed a 1090 ± 410 kPa Young Modulus, a 50 ± 10 % Elongation at Break and a 270 ± 80 kPa Ultimate Tensile Strength (UTS). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) indicated that BC begins its degradation around 290 °C. Fourier-Transform Infrared spectroscopy (FTIR) of freeze-dried BC membranes confirmed the obtained biofilm to be BC. The results of this study provide valuable information on the potential applications of BC membranes in different industries including textile, biomedical and as a low-cost alternative to some synthetic polymers. •High yield of bacterial cellulose with a novel strain from Kombucha.•Hydrated bacterial cellulose mechanical properties evaluated.•Degradation temperature of bacterial cellulose obtained with DSC and TGA.•Methodology to characterize bacterial cellulose through compression and traction.</description><subject>agricultural biotechnology</subject><subject>Bacterial cellulose</subject><subject>biocatalysis</subject><subject>biofilm</subject><subject>Biomaterials</subject><subject>calorimetry</subject><subject>cellulose</subject><subject>Co-culture</subject><subject>cosmetics</subject><subject>fabrics</subject><subject>fermentation</subject><subject>Fourier transform infrared spectroscopy</subject><subject>freeze drying</subject><subject>Hydrogel</subject><subject>kombucha</subject><subject>Mechanical and thermal properties</subject><subject>plastic deformation</subject><subject>thermogravimetry</subject><subject>yeasts</subject><issn>1878-8181</issn><issn>1878-8181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhisEEtPYH-CUI5eOJE3bTOIC1fgQk3YADpwiN3W1jLYZSYo0fj2tyoETvtiy_Vp-nyi6ZHTJKMuu98tSQ7nklIuhkbCcn0QzJnMZSybZ6Z_6PFp4v6dDZDTlUswiXezAgQ7ozDcEYztia1JODWiIxqbpG-uRHJyteo0VKY8k7JA823YdiA8OTEeMtw2EYVg72xIgH7Yte70D8lJs794vorMaGo-L3zyP3u7Xr8VjvNk-PBW3m1gnXIa4rqQua9R6BZksuc5YRpOEAhfANQLLVzVdcRRpKSsq0qrmCdWCDdY5QlbxZB5dTXeHXz979EG1xo8OoEPbe5WwNMmEEPm4yqdV7az3Dmt1cKYFd1SMqhGq2qsRqhqhqgnqILqZRDiY-DLolNcGuwGKcaiDqqz5T_4DQyCAiQ</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Chaussé, Jérémie</creator><creator>Girard, Vincent-Daniel</creator><creator>Perron, Théotime</creator><creator>Challut, Tamara</creator><creator>Vermette, Patrick</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-6659-3695</orcidid><orcidid>https://orcid.org/0009-0001-5453-8637</orcidid><orcidid>https://orcid.org/0009-0001-8445-6835</orcidid></search><sort><creationdate>20240601</creationdate><title>Characterization of bacterial cellulose produced by the KomEt strain isolated from a kombucha SCOBY</title><author>Chaussé, Jérémie ; Girard, Vincent-Daniel ; Perron, Théotime ; Challut, Tamara ; Vermette, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-fd8cbfecc9a68b2c6160330a24a2cea179f092e45b8d045df230c41cab2ea6d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>agricultural biotechnology</topic><topic>Bacterial cellulose</topic><topic>biocatalysis</topic><topic>biofilm</topic><topic>Biomaterials</topic><topic>calorimetry</topic><topic>cellulose</topic><topic>Co-culture</topic><topic>cosmetics</topic><topic>fabrics</topic><topic>fermentation</topic><topic>Fourier transform infrared spectroscopy</topic><topic>freeze drying</topic><topic>Hydrogel</topic><topic>kombucha</topic><topic>Mechanical and thermal properties</topic><topic>plastic deformation</topic><topic>thermogravimetry</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaussé, Jérémie</creatorcontrib><creatorcontrib>Girard, Vincent-Daniel</creatorcontrib><creatorcontrib>Perron, Théotime</creatorcontrib><creatorcontrib>Challut, Tamara</creatorcontrib><creatorcontrib>Vermette, Patrick</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biocatalysis and agricultural biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaussé, Jérémie</au><au>Girard, Vincent-Daniel</au><au>Perron, Théotime</au><au>Challut, Tamara</au><au>Vermette, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of bacterial cellulose produced by the KomEt strain isolated from a kombucha SCOBY</atitle><jtitle>Biocatalysis and agricultural biotechnology</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>58</volume><spage>103172</spage><pages>103172-</pages><artnum>103172</artnum><issn>1878-8181</issn><eissn>1878-8181</eissn><abstract>Bacterial cellulose (BC) is gaining interest, due to its actual and potential applications in the biomedical, cosmetics and textile industries. In this study, mechanical, thermal, and chemical properties of BC produced from a novel strain, isolated from a kombucha symbiotic culture of bacteria and yeast (SCOBY), were evaluated. The highest obtained yields with this strain, after a 10-day fermentation, were 496 ± 14 g/L (native hydrated) and 19 ± 1 g/L (dry). Compression, including relaxation, and traction tests were performed on BC membranes in a hydrated state. The tested material revealed a 3-phase compression behaviour with a compression modulus of 235 ± 50 Pa. In terms of relaxation in water, BC membranes showed plastic deformation past 50 % compression. Regarding BC membrane under traction, analysis showed a 1090 ± 410 kPa Young Modulus, a 50 ± 10 % Elongation at Break and a 270 ± 80 kPa Ultimate Tensile Strength (UTS). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) indicated that BC begins its degradation around 290 °C. Fourier-Transform Infrared spectroscopy (FTIR) of freeze-dried BC membranes confirmed the obtained biofilm to be BC. The results of this study provide valuable information on the potential applications of BC membranes in different industries including textile, biomedical and as a low-cost alternative to some synthetic polymers. •High yield of bacterial cellulose with a novel strain from Kombucha.•Hydrated bacterial cellulose mechanical properties evaluated.•Degradation temperature of bacterial cellulose obtained with DSC and TGA.•Methodology to characterize bacterial cellulose through compression and traction.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.bcab.2024.103172</doi><orcidid>https://orcid.org/0000-0001-6659-3695</orcidid><orcidid>https://orcid.org/0009-0001-5453-8637</orcidid><orcidid>https://orcid.org/0009-0001-8445-6835</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1878-8181
ispartof Biocatalysis and agricultural biotechnology, 2024-06, Vol.58, p.103172, Article 103172
issn 1878-8181
1878-8181
language eng
recordid cdi_proquest_miscellaneous_3153644472
source Alma/SFX Local Collection
subjects agricultural biotechnology
Bacterial cellulose
biocatalysis
biofilm
Biomaterials
calorimetry
cellulose
Co-culture
cosmetics
fabrics
fermentation
Fourier transform infrared spectroscopy
freeze drying
Hydrogel
kombucha
Mechanical and thermal properties
plastic deformation
thermogravimetry
yeasts
title Characterization of bacterial cellulose produced by the KomEt strain isolated from a kombucha SCOBY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20bacterial%20cellulose%20produced%20by%20the%20KomEt%20strain%20isolated%20from%20a%20kombucha%20SCOBY&rft.jtitle=Biocatalysis%20and%20agricultural%20biotechnology&rft.au=Chauss%C3%A9,%20J%C3%A9r%C3%A9mie&rft.date=2024-06-01&rft.volume=58&rft.spage=103172&rft.pages=103172-&rft.artnum=103172&rft.issn=1878-8181&rft.eissn=1878-8181&rft_id=info:doi/10.1016/j.bcab.2024.103172&rft_dat=%3Cproquest_cross%3E3153644472%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153644472&rft_id=info:pmid/&rft_els_id=S1878818124001567&rfr_iscdi=true