Multi-objective optimization of regional power generation mix considering both carbon cap-and-trade mechanisms and renewable portfolio standards

The optimization of regional power generation mix is important to achieve the carbon peaking and neutrality goals. This study proposes a multi-objective optimization model for regional long-term electricity system planning considering both the carbon cap-and-trade mechanisms and renewable portfolio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy 2024-09, Vol.231, p.120937, Article 120937
Hauptverfasser: He, Yong, Zeng, Zhaoai, Liao, Nuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 120937
container_title Renewable energy
container_volume 231
creator He, Yong
Zeng, Zhaoai
Liao, Nuo
description The optimization of regional power generation mix is important to achieve the carbon peaking and neutrality goals. This study proposes a multi-objective optimization model for regional long-term electricity system planning considering both the carbon cap-and-trade mechanisms and renewable portfolio standards. Baseline scenario, strict policy scenario and loose policy scenario are designed to compare the optimization results of power generation mix. Furthermore, a green transformation comprehensive index (GTCI) is proposed to evaluate the effect of green transformation in power sector. The case study of Guangdong province in China is conducted, and the results indicate that, in the baseline scenario, the share of renewable energy generation would reach to 34.97 % in 2035, and the carbon emission would peak in 2030; in the strict policy scenario, the share of renewable energy generation would reach to 37.28 % in 2035, and the carbon emission would peak in 2025; in the loose policy scenario, the share of renewable energy generation would reach to 33.05 % in 2035, and the carbon emission would peak after 2035; the value of GTCI reflects that the power system of Guangdong province has good trend of green transformation. This study could support important reference for the power system transformation at regional level.
doi_str_mv 10.1016/j.renene.2024.120937
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153643765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S096014812401005X</els_id><sourcerecordid>3153643765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-4fdf7f1357f2c05658de4a8ce684b67f7c882808feb517a9f10a41f9c02c1f103</originalsourceid><addsrcrecordid>eNp9UU1PxCAQJUYT19V_4IGjl67Q0kIvJmbjV7LGi54JpcMum7ZUYNePX-FPlk09mzkww5v3YOYhdEnJghJaXW8XHoYUi5zkbEFzUhf8CM2o4HVGKpEfoxmpK5JRJugpOgthSwgtBWcz9PO866LNXLMFHe0esBuj7e23itYN2BnsYZ0y1eHRfYDH6_SMn8DefmLthmBb8HZY48bFDdbKNwnTaszU0GbRqxZwD3qjBhv6gNMlPnz2QzUdJE0fjeuswyEmRPk2nKMTo7oAF3_nHL3d370uH7PVy8PT8naV6ZyKmDHTGm5oUXKTa1JWpWiBKaGhEqypuOFaiFwQYaApKVe1oUQxampNck1TUczR1aQ7eve-gxBlb4OGrlMDuF2QBS2LihW8KlMrm1q1dyF4MHL0tlf-S1IiDwbIrZwMkAcD5GRAot1MNEhj7C14GbSFQUNrfVq2bJ39X-AXwdSUzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153643765</pqid></control><display><type>article</type><title>Multi-objective optimization of regional power generation mix considering both carbon cap-and-trade mechanisms and renewable portfolio standards</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>He, Yong ; Zeng, Zhaoai ; Liao, Nuo</creator><creatorcontrib>He, Yong ; Zeng, Zhaoai ; Liao, Nuo</creatorcontrib><description>The optimization of regional power generation mix is important to achieve the carbon peaking and neutrality goals. This study proposes a multi-objective optimization model for regional long-term electricity system planning considering both the carbon cap-and-trade mechanisms and renewable portfolio standards. Baseline scenario, strict policy scenario and loose policy scenario are designed to compare the optimization results of power generation mix. Furthermore, a green transformation comprehensive index (GTCI) is proposed to evaluate the effect of green transformation in power sector. The case study of Guangdong province in China is conducted, and the results indicate that, in the baseline scenario, the share of renewable energy generation would reach to 34.97 % in 2035, and the carbon emission would peak in 2030; in the strict policy scenario, the share of renewable energy generation would reach to 37.28 % in 2035, and the carbon emission would peak in 2025; in the loose policy scenario, the share of renewable energy generation would reach to 33.05 % in 2035, and the carbon emission would peak after 2035; the value of GTCI reflects that the power system of Guangdong province has good trend of green transformation. This study could support important reference for the power system transformation at regional level.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2024.120937</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>carbon ; Carbon cap-and-trade mechanisms ; case studies ; China ; electricity ; environmental markets ; issues and policy ; Multi-objective optimization ; power generation ; Power generation mix ; renewable energy sources ; Renewable portfolio standards ; Scenario analysis</subject><ispartof>Renewable energy, 2024-09, Vol.231, p.120937, Article 120937</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-4fdf7f1357f2c05658de4a8ce684b67f7c882808feb517a9f10a41f9c02c1f103</cites><orcidid>0000-0002-9070-6730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.renene.2024.120937$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Zeng, Zhaoai</creatorcontrib><creatorcontrib>Liao, Nuo</creatorcontrib><title>Multi-objective optimization of regional power generation mix considering both carbon cap-and-trade mechanisms and renewable portfolio standards</title><title>Renewable energy</title><description>The optimization of regional power generation mix is important to achieve the carbon peaking and neutrality goals. This study proposes a multi-objective optimization model for regional long-term electricity system planning considering both the carbon cap-and-trade mechanisms and renewable portfolio standards. Baseline scenario, strict policy scenario and loose policy scenario are designed to compare the optimization results of power generation mix. Furthermore, a green transformation comprehensive index (GTCI) is proposed to evaluate the effect of green transformation in power sector. The case study of Guangdong province in China is conducted, and the results indicate that, in the baseline scenario, the share of renewable energy generation would reach to 34.97 % in 2035, and the carbon emission would peak in 2030; in the strict policy scenario, the share of renewable energy generation would reach to 37.28 % in 2035, and the carbon emission would peak in 2025; in the loose policy scenario, the share of renewable energy generation would reach to 33.05 % in 2035, and the carbon emission would peak after 2035; the value of GTCI reflects that the power system of Guangdong province has good trend of green transformation. This study could support important reference for the power system transformation at regional level.</description><subject>carbon</subject><subject>Carbon cap-and-trade mechanisms</subject><subject>case studies</subject><subject>China</subject><subject>electricity</subject><subject>environmental markets</subject><subject>issues and policy</subject><subject>Multi-objective optimization</subject><subject>power generation</subject><subject>Power generation mix</subject><subject>renewable energy sources</subject><subject>Renewable portfolio standards</subject><subject>Scenario analysis</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UU1PxCAQJUYT19V_4IGjl67Q0kIvJmbjV7LGi54JpcMum7ZUYNePX-FPlk09mzkww5v3YOYhdEnJghJaXW8XHoYUi5zkbEFzUhf8CM2o4HVGKpEfoxmpK5JRJugpOgthSwgtBWcz9PO866LNXLMFHe0esBuj7e23itYN2BnsYZ0y1eHRfYDH6_SMn8DefmLthmBb8HZY48bFDdbKNwnTaszU0GbRqxZwD3qjBhv6gNMlPnz2QzUdJE0fjeuswyEmRPk2nKMTo7oAF3_nHL3d370uH7PVy8PT8naV6ZyKmDHTGm5oUXKTa1JWpWiBKaGhEqypuOFaiFwQYaApKVe1oUQxampNck1TUczR1aQ7eve-gxBlb4OGrlMDuF2QBS2LihW8KlMrm1q1dyF4MHL0tlf-S1IiDwbIrZwMkAcD5GRAot1MNEhj7C14GbSFQUNrfVq2bJ39X-AXwdSUzw</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>He, Yong</creator><creator>Zeng, Zhaoai</creator><creator>Liao, Nuo</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-9070-6730</orcidid></search><sort><creationdate>20240901</creationdate><title>Multi-objective optimization of regional power generation mix considering both carbon cap-and-trade mechanisms and renewable portfolio standards</title><author>He, Yong ; Zeng, Zhaoai ; Liao, Nuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-4fdf7f1357f2c05658de4a8ce684b67f7c882808feb517a9f10a41f9c02c1f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>carbon</topic><topic>Carbon cap-and-trade mechanisms</topic><topic>case studies</topic><topic>China</topic><topic>electricity</topic><topic>environmental markets</topic><topic>issues and policy</topic><topic>Multi-objective optimization</topic><topic>power generation</topic><topic>Power generation mix</topic><topic>renewable energy sources</topic><topic>Renewable portfolio standards</topic><topic>Scenario analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Zeng, Zhaoai</creatorcontrib><creatorcontrib>Liao, Nuo</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Yong</au><au>Zeng, Zhaoai</au><au>Liao, Nuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective optimization of regional power generation mix considering both carbon cap-and-trade mechanisms and renewable portfolio standards</atitle><jtitle>Renewable energy</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>231</volume><spage>120937</spage><pages>120937-</pages><artnum>120937</artnum><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>The optimization of regional power generation mix is important to achieve the carbon peaking and neutrality goals. This study proposes a multi-objective optimization model for regional long-term electricity system planning considering both the carbon cap-and-trade mechanisms and renewable portfolio standards. Baseline scenario, strict policy scenario and loose policy scenario are designed to compare the optimization results of power generation mix. Furthermore, a green transformation comprehensive index (GTCI) is proposed to evaluate the effect of green transformation in power sector. The case study of Guangdong province in China is conducted, and the results indicate that, in the baseline scenario, the share of renewable energy generation would reach to 34.97 % in 2035, and the carbon emission would peak in 2030; in the strict policy scenario, the share of renewable energy generation would reach to 37.28 % in 2035, and the carbon emission would peak in 2025; in the loose policy scenario, the share of renewable energy generation would reach to 33.05 % in 2035, and the carbon emission would peak after 2035; the value of GTCI reflects that the power system of Guangdong province has good trend of green transformation. This study could support important reference for the power system transformation at regional level.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2024.120937</doi><orcidid>https://orcid.org/0000-0002-9070-6730</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2024-09, Vol.231, p.120937, Article 120937
issn 0960-1481
1879-0682
language eng
recordid cdi_proquest_miscellaneous_3153643765
source ScienceDirect Journals (5 years ago - present)
subjects carbon
Carbon cap-and-trade mechanisms
case studies
China
electricity
environmental markets
issues and policy
Multi-objective optimization
power generation
Power generation mix
renewable energy sources
Renewable portfolio standards
Scenario analysis
title Multi-objective optimization of regional power generation mix considering both carbon cap-and-trade mechanisms and renewable portfolio standards
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A19%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20optimization%20of%20regional%20power%20generation%20mix%20considering%20both%20carbon%20cap-and-trade%20mechanisms%20and%20renewable%20portfolio%20standards&rft.jtitle=Renewable%20energy&rft.au=He,%20Yong&rft.date=2024-09-01&rft.volume=231&rft.spage=120937&rft.pages=120937-&rft.artnum=120937&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2024.120937&rft_dat=%3Cproquest_cross%3E3153643765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153643765&rft_id=info:pmid/&rft_els_id=S096014812401005X&rfr_iscdi=true