Enhancing bone regeneration and immunomodulation via gelatin methacryloyl hydrogel-encapsulated exosomes from osteogenic pre-differentiated mesenchymal stem cells

[Display omitted] •MSC-Exos was extracted from pre-differentiated hBMSCs by ultracentrifugation.•MSC-Exos encapsulated hydrogel effectively promotes osteogenesis and angiogenesis.•The miR-18a-5p in MSC-Exos regulates macrophage polarization by the p53 pathway. Mesenchymal stem cell-derived exosomes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2024-10, Vol.672, p.179-199
Hauptverfasser: Li, Xiaorong, Si, Yunhui, Liang, Jingxian, Li, Mengsha, Wang, Zhiwei, Qin, Yinying, Sun, Litao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 199
container_issue
container_start_page 179
container_title Journal of colloid and interface science
container_volume 672
creator Li, Xiaorong
Si, Yunhui
Liang, Jingxian
Li, Mengsha
Wang, Zhiwei
Qin, Yinying
Sun, Litao
description [Display omitted] •MSC-Exos was extracted from pre-differentiated hBMSCs by ultracentrifugation.•MSC-Exos encapsulated hydrogel effectively promotes osteogenesis and angiogenesis.•The miR-18a-5p in MSC-Exos regulates macrophage polarization by the p53 pathway. Mesenchymal stem cell-derived exosomes (MSC-Exos) have emerged as promising candidates for cell-free therapy in tissue regeneration. However, the native osteogenic and angiogenic capacities of MSC-Exos are often insufficient to repair critical-sized bone defects, and the underlying immune mechanisms remain elusive. Furthermore, achieving sustained delivery and stable activity of MSC-Exos at the defect site is essential for optimal therapeutic outcomes. Here, we extracted exosomes from osteogenically pre-differentiated human bone marrow mesenchymal stem cells (hBMSCs) by ultracentrifugation and encapsulated them in gelatin methacryloyl (GelMA) hydrogel to construct a composite scaffold. The resulting exosome-encapsulated hydrogel exhibited excellent mechanical properties and biocompatibility, facilitating sustained delivery of MSC-Exos. Osteogenic pre-differentiation significantly enhanced the osteogenic and angiogenic properties of MSC-Exos, promoting osteogenic differentiation of hBMSCs and angiogenesis of human umbilical vein endothelial cells (HUVECs). Furthermore, MSC-Exos induced polarization of Raw264.7 cells from a pro-inflammatory phenotype to an anti-inflammatory phenotype under simulated inflammatory conditions, thereby creating an immune microenvironment conducive to osteogenesis. RNA sequencing and bioinformatics analysis revealed that MSC-Exos activate the p53 pathway through targeted delivery of internal microRNAs and regulate macrophage polarization by reducing DNA oxidative damage. Our study highlights the potential of osteogenic exosome-encapsulated composite hydrogels for the development of cell-free scaffolds in bone tissue engineering.
doi_str_mv 10.1016/j.jcis.2024.05.209
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153629454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724012037</els_id><sourcerecordid>3153629454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ffaec71bb18903388042bf4995997a0b838d9b98c1466b53704dcc72fa5fa0c13</originalsourceid><addsrcrecordid>eNqFkc2OFCEUhYnROO3oC7gwLN1UC1RRFIkbMxl_kknc6JpQcOmmU0ALVRPrdeZJpezRpa5OgO-ccO9B6DUle0po_-60Pxlf9oywbk94VfkE7SiRvBGUtE_RjhBGGymkuEIvSjkRQinn8jm6aoehHXomdujhNh51ND4e8Jgi4AwHiJD17FPEOlrsQ1hiCsku0-Xy3mt8gO0QcYD5qE1ep7RO-LjanOpLA9Hoc9l4sBh-ppICFOxyCjiVGSoTvcHnDI31zkGGOPvfbMWq97gGPeEKBmxgmspL9MzpqcCrR71G3z_efrv53Nx9_fTl5sNdY5ggc-OcBiPoONJBkrZOSDo2uk5KLqXQZKwTWznKwdCu70feCtJZYwRzmjtNDG2v0dtL7jmnHwuUWQVfth_oCGkpqqW87ZnsePd_lPSciZ7LtqLsgpqcSsng1Dn7oPOqKFFbjeqkthrVVqMivKqspjeP-csYwP61_OmtAu8vANSF3HvIqhhfdwfWZzCzssn_K_8XJiyziA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065276593</pqid></control><display><type>article</type><title>Enhancing bone regeneration and immunomodulation via gelatin methacryloyl hydrogel-encapsulated exosomes from osteogenic pre-differentiated mesenchymal stem cells</title><source>Elsevier ScienceDirect Journals</source><creator>Li, Xiaorong ; Si, Yunhui ; Liang, Jingxian ; Li, Mengsha ; Wang, Zhiwei ; Qin, Yinying ; Sun, Litao</creator><creatorcontrib>Li, Xiaorong ; Si, Yunhui ; Liang, Jingxian ; Li, Mengsha ; Wang, Zhiwei ; Qin, Yinying ; Sun, Litao</creatorcontrib><description>[Display omitted] •MSC-Exos was extracted from pre-differentiated hBMSCs by ultracentrifugation.•MSC-Exos encapsulated hydrogel effectively promotes osteogenesis and angiogenesis.•The miR-18a-5p in MSC-Exos regulates macrophage polarization by the p53 pathway. Mesenchymal stem cell-derived exosomes (MSC-Exos) have emerged as promising candidates for cell-free therapy in tissue regeneration. However, the native osteogenic and angiogenic capacities of MSC-Exos are often insufficient to repair critical-sized bone defects, and the underlying immune mechanisms remain elusive. Furthermore, achieving sustained delivery and stable activity of MSC-Exos at the defect site is essential for optimal therapeutic outcomes. Here, we extracted exosomes from osteogenically pre-differentiated human bone marrow mesenchymal stem cells (hBMSCs) by ultracentrifugation and encapsulated them in gelatin methacryloyl (GelMA) hydrogel to construct a composite scaffold. The resulting exosome-encapsulated hydrogel exhibited excellent mechanical properties and biocompatibility, facilitating sustained delivery of MSC-Exos. Osteogenic pre-differentiation significantly enhanced the osteogenic and angiogenic properties of MSC-Exos, promoting osteogenic differentiation of hBMSCs and angiogenesis of human umbilical vein endothelial cells (HUVECs). Furthermore, MSC-Exos induced polarization of Raw264.7 cells from a pro-inflammatory phenotype to an anti-inflammatory phenotype under simulated inflammatory conditions, thereby creating an immune microenvironment conducive to osteogenesis. RNA sequencing and bioinformatics analysis revealed that MSC-Exos activate the p53 pathway through targeted delivery of internal microRNAs and regulate macrophage polarization by reducing DNA oxidative damage. Our study highlights the potential of osteogenic exosome-encapsulated composite hydrogels for the development of cell-free scaffolds in bone tissue engineering.</description><identifier>ISSN: 0021-9797</identifier><identifier>ISSN: 1095-7103</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.05.209</identifier><identifier>PMID: 38838627</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>angiogenesis ; biocompatibility ; bioinformatics ; bone formation ; bone marrow ; Composite hydrogel ; DNA ; Exosomes ; gelatin ; humans ; hydrogels ; Immune mechanisms ; immunomodulation ; macrophages ; Mesenchymal stem cells ; microRNA ; Osteogenesis ; phenotype ; therapeutics ; tissue repair ; ultracentrifugation</subject><ispartof>Journal of colloid and interface science, 2024-10, Vol.672, p.179-199</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-ffaec71bb18903388042bf4995997a0b838d9b98c1466b53704dcc72fa5fa0c13</cites><orcidid>0000-0002-8415-989X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979724012037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38838627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xiaorong</creatorcontrib><creatorcontrib>Si, Yunhui</creatorcontrib><creatorcontrib>Liang, Jingxian</creatorcontrib><creatorcontrib>Li, Mengsha</creatorcontrib><creatorcontrib>Wang, Zhiwei</creatorcontrib><creatorcontrib>Qin, Yinying</creatorcontrib><creatorcontrib>Sun, Litao</creatorcontrib><title>Enhancing bone regeneration and immunomodulation via gelatin methacryloyl hydrogel-encapsulated exosomes from osteogenic pre-differentiated mesenchymal stem cells</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted] •MSC-Exos was extracted from pre-differentiated hBMSCs by ultracentrifugation.•MSC-Exos encapsulated hydrogel effectively promotes osteogenesis and angiogenesis.•The miR-18a-5p in MSC-Exos regulates macrophage polarization by the p53 pathway. Mesenchymal stem cell-derived exosomes (MSC-Exos) have emerged as promising candidates for cell-free therapy in tissue regeneration. However, the native osteogenic and angiogenic capacities of MSC-Exos are often insufficient to repair critical-sized bone defects, and the underlying immune mechanisms remain elusive. Furthermore, achieving sustained delivery and stable activity of MSC-Exos at the defect site is essential for optimal therapeutic outcomes. Here, we extracted exosomes from osteogenically pre-differentiated human bone marrow mesenchymal stem cells (hBMSCs) by ultracentrifugation and encapsulated them in gelatin methacryloyl (GelMA) hydrogel to construct a composite scaffold. The resulting exosome-encapsulated hydrogel exhibited excellent mechanical properties and biocompatibility, facilitating sustained delivery of MSC-Exos. Osteogenic pre-differentiation significantly enhanced the osteogenic and angiogenic properties of MSC-Exos, promoting osteogenic differentiation of hBMSCs and angiogenesis of human umbilical vein endothelial cells (HUVECs). Furthermore, MSC-Exos induced polarization of Raw264.7 cells from a pro-inflammatory phenotype to an anti-inflammatory phenotype under simulated inflammatory conditions, thereby creating an immune microenvironment conducive to osteogenesis. RNA sequencing and bioinformatics analysis revealed that MSC-Exos activate the p53 pathway through targeted delivery of internal microRNAs and regulate macrophage polarization by reducing DNA oxidative damage. Our study highlights the potential of osteogenic exosome-encapsulated composite hydrogels for the development of cell-free scaffolds in bone tissue engineering.</description><subject>angiogenesis</subject><subject>biocompatibility</subject><subject>bioinformatics</subject><subject>bone formation</subject><subject>bone marrow</subject><subject>Composite hydrogel</subject><subject>DNA</subject><subject>Exosomes</subject><subject>gelatin</subject><subject>humans</subject><subject>hydrogels</subject><subject>Immune mechanisms</subject><subject>immunomodulation</subject><subject>macrophages</subject><subject>Mesenchymal stem cells</subject><subject>microRNA</subject><subject>Osteogenesis</subject><subject>phenotype</subject><subject>therapeutics</subject><subject>tissue repair</subject><subject>ultracentrifugation</subject><issn>0021-9797</issn><issn>1095-7103</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc2OFCEUhYnROO3oC7gwLN1UC1RRFIkbMxl_kknc6JpQcOmmU0ALVRPrdeZJpezRpa5OgO-ccO9B6DUle0po_-60Pxlf9oywbk94VfkE7SiRvBGUtE_RjhBGGymkuEIvSjkRQinn8jm6aoehHXomdujhNh51ND4e8Jgi4AwHiJD17FPEOlrsQ1hiCsku0-Xy3mt8gO0QcYD5qE1ep7RO-LjanOpLA9Hoc9l4sBh-ppICFOxyCjiVGSoTvcHnDI31zkGGOPvfbMWq97gGPeEKBmxgmspL9MzpqcCrR71G3z_efrv53Nx9_fTl5sNdY5ggc-OcBiPoONJBkrZOSDo2uk5KLqXQZKwTWznKwdCu70feCtJZYwRzmjtNDG2v0dtL7jmnHwuUWQVfth_oCGkpqqW87ZnsePd_lPSciZ7LtqLsgpqcSsng1Dn7oPOqKFFbjeqkthrVVqMivKqspjeP-csYwP61_OmtAu8vANSF3HvIqhhfdwfWZzCzssn_K_8XJiyziA</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Li, Xiaorong</creator><creator>Si, Yunhui</creator><creator>Liang, Jingxian</creator><creator>Li, Mengsha</creator><creator>Wang, Zhiwei</creator><creator>Qin, Yinying</creator><creator>Sun, Litao</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-8415-989X</orcidid></search><sort><creationdate>20241015</creationdate><title>Enhancing bone regeneration and immunomodulation via gelatin methacryloyl hydrogel-encapsulated exosomes from osteogenic pre-differentiated mesenchymal stem cells</title><author>Li, Xiaorong ; Si, Yunhui ; Liang, Jingxian ; Li, Mengsha ; Wang, Zhiwei ; Qin, Yinying ; Sun, Litao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ffaec71bb18903388042bf4995997a0b838d9b98c1466b53704dcc72fa5fa0c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>angiogenesis</topic><topic>biocompatibility</topic><topic>bioinformatics</topic><topic>bone formation</topic><topic>bone marrow</topic><topic>Composite hydrogel</topic><topic>DNA</topic><topic>Exosomes</topic><topic>gelatin</topic><topic>humans</topic><topic>hydrogels</topic><topic>Immune mechanisms</topic><topic>immunomodulation</topic><topic>macrophages</topic><topic>Mesenchymal stem cells</topic><topic>microRNA</topic><topic>Osteogenesis</topic><topic>phenotype</topic><topic>therapeutics</topic><topic>tissue repair</topic><topic>ultracentrifugation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiaorong</creatorcontrib><creatorcontrib>Si, Yunhui</creatorcontrib><creatorcontrib>Liang, Jingxian</creatorcontrib><creatorcontrib>Li, Mengsha</creatorcontrib><creatorcontrib>Wang, Zhiwei</creatorcontrib><creatorcontrib>Qin, Yinying</creatorcontrib><creatorcontrib>Sun, Litao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiaorong</au><au>Si, Yunhui</au><au>Liang, Jingxian</au><au>Li, Mengsha</au><au>Wang, Zhiwei</au><au>Qin, Yinying</au><au>Sun, Litao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing bone regeneration and immunomodulation via gelatin methacryloyl hydrogel-encapsulated exosomes from osteogenic pre-differentiated mesenchymal stem cells</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2024-10-15</date><risdate>2024</risdate><volume>672</volume><spage>179</spage><epage>199</epage><pages>179-199</pages><issn>0021-9797</issn><issn>1095-7103</issn><eissn>1095-7103</eissn><abstract>[Display omitted] •MSC-Exos was extracted from pre-differentiated hBMSCs by ultracentrifugation.•MSC-Exos encapsulated hydrogel effectively promotes osteogenesis and angiogenesis.•The miR-18a-5p in MSC-Exos regulates macrophage polarization by the p53 pathway. Mesenchymal stem cell-derived exosomes (MSC-Exos) have emerged as promising candidates for cell-free therapy in tissue regeneration. However, the native osteogenic and angiogenic capacities of MSC-Exos are often insufficient to repair critical-sized bone defects, and the underlying immune mechanisms remain elusive. Furthermore, achieving sustained delivery and stable activity of MSC-Exos at the defect site is essential for optimal therapeutic outcomes. Here, we extracted exosomes from osteogenically pre-differentiated human bone marrow mesenchymal stem cells (hBMSCs) by ultracentrifugation and encapsulated them in gelatin methacryloyl (GelMA) hydrogel to construct a composite scaffold. The resulting exosome-encapsulated hydrogel exhibited excellent mechanical properties and biocompatibility, facilitating sustained delivery of MSC-Exos. Osteogenic pre-differentiation significantly enhanced the osteogenic and angiogenic properties of MSC-Exos, promoting osteogenic differentiation of hBMSCs and angiogenesis of human umbilical vein endothelial cells (HUVECs). Furthermore, MSC-Exos induced polarization of Raw264.7 cells from a pro-inflammatory phenotype to an anti-inflammatory phenotype under simulated inflammatory conditions, thereby creating an immune microenvironment conducive to osteogenesis. RNA sequencing and bioinformatics analysis revealed that MSC-Exos activate the p53 pathway through targeted delivery of internal microRNAs and regulate macrophage polarization by reducing DNA oxidative damage. Our study highlights the potential of osteogenic exosome-encapsulated composite hydrogels for the development of cell-free scaffolds in bone tissue engineering.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38838627</pmid><doi>10.1016/j.jcis.2024.05.209</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8415-989X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2024-10, Vol.672, p.179-199
issn 0021-9797
1095-7103
1095-7103
language eng
recordid cdi_proquest_miscellaneous_3153629454
source Elsevier ScienceDirect Journals
subjects angiogenesis
biocompatibility
bioinformatics
bone formation
bone marrow
Composite hydrogel
DNA
Exosomes
gelatin
humans
hydrogels
Immune mechanisms
immunomodulation
macrophages
Mesenchymal stem cells
microRNA
Osteogenesis
phenotype
therapeutics
tissue repair
ultracentrifugation
title Enhancing bone regeneration and immunomodulation via gelatin methacryloyl hydrogel-encapsulated exosomes from osteogenic pre-differentiated mesenchymal stem cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A09%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20bone%20regeneration%20and%20immunomodulation%20via%20gelatin%20methacryloyl%20hydrogel-encapsulated%20exosomes%20from%20osteogenic%20pre-differentiated%20mesenchymal%20stem%20cells&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Li,%20Xiaorong&rft.date=2024-10-15&rft.volume=672&rft.spage=179&rft.epage=199&rft.pages=179-199&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.05.209&rft_dat=%3Cproquest_cross%3E3153629454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065276593&rft_id=info:pmid/38838627&rft_els_id=S0021979724012037&rfr_iscdi=true