A Biomimetic Fibrous Composite Scaffold with Nanotopography-Regulated Mineralization for Bone Defect Repair

The effective regeneration of large bone defects via bone tissue engineering is challenging due to the difficulty in creating an osteogenic microenvironment. Inspired by the fibrillar architecture of the natural extracellular matrix, we developed a nanoscale bioengineering strategy to produce bone f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2024-06, Vol.25 (6), p.3784-3794
Hauptverfasser: Jiang, Kai, Wang, Kai, Luo, Chuan, Su, Biao-Yao, Du, Hao, Liu, Yao, Lei, Jun, Luo, En, Cardon, Ludwig, Edeleva, Mariya, Huang, Shi-Shu, Xu, Jia-Zhuang, Li, Zhong-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3794
container_issue 6
container_start_page 3784
container_title Biomacromolecules
container_volume 25
creator Jiang, Kai
Wang, Kai
Luo, Chuan
Su, Biao-Yao
Du, Hao
Liu, Yao
Lei, Jun
Luo, En
Cardon, Ludwig
Edeleva, Mariya
Huang, Shi-Shu
Xu, Jia-Zhuang
Li, Zhong-Ming
description The effective regeneration of large bone defects via bone tissue engineering is challenging due to the difficulty in creating an osteogenic microenvironment. Inspired by the fibrillar architecture of the natural extracellular matrix, we developed a nanoscale bioengineering strategy to produce bone fibril-like composite scaffolds with enhanced osteogenic capability. To activate the surface for biofunctionalization, self-adaptive ridge-like nanolamellae were constructed on poly­(ε-caprolactone) (PCL) electrospinning scaffolds via surface-directed epitaxial crystallization. This unique nanotopography with a markedly increased specific surface area offered abundant nucleation sites for Ca2+ recruitment, leading to a 5-fold greater deposition weight of hydroxyapatite than that of the pristine PCL scaffold under stimulated physiological conditions. Bone marrow mesenchymal stem cells (BMSCs) cultured on bone fibril-like scaffolds exhibited enhanced adhesion, proliferation, and osteogenic differentiation in vitro. In a rat calvarial defect model, the bone fibril-like scaffold significantly accelerated bone regeneration, as evidenced by micro-CT, histological histological and immunofluorescence staining. This work provides the way for recapitulating the osteogenic microenvironment in tissue-engineered scaffolds for bone repair.
doi_str_mv 10.1021/acs.biomac.4c00378
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153626718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153626718</sourcerecordid><originalsourceid>FETCH-LOGICAL-a326t-2d8a056bc2d50d65c764844eb278b7c39be1300687f341c57d27f10a054fedbb3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0E6vcf4IB85JLF3_Ye24UWpAJSac-R7YxblyQOtqOq_Pqm3YUjnGYOz_tKMw9CbylZUcLoB-vLysU0WL8SnhCuzSt0QCVTjVCEvX7ZZaP1Wu-jw1LuCSFrLuQe2udGC264OkA_T_HZUhEHqNHj8-hymgvepGFKJVbAP7wNIfUdfoj1Dn-zY6ppSrfZTnePzRXczr2t0OGvcYRs-_jb1phGHFLGZ2kE_BEC-IqvYLIxH6M3wfYFTnbzCN2cf7refG4uv1982ZxeNpYzVRvWGUukcp51knRKeq2EEQIc08Zpz9cOKCdEGR24oF7qjulAyZIRATrn-BF6v-2dcvo1Q6ntEIuHvrcjLNe1nEqumNLU_B8lUgpJjVALyraoz6mUDKGdchxsfmwpaZ99tIuPduuj3flYQu92_bMboPsb-SNgAVZb4Dl8n-Y8Lp_5V-MTMu2Y4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055451846</pqid></control><display><type>article</type><title>A Biomimetic Fibrous Composite Scaffold with Nanotopography-Regulated Mineralization for Bone Defect Repair</title><source>MEDLINE</source><source>ACS Publications</source><creator>Jiang, Kai ; Wang, Kai ; Luo, Chuan ; Su, Biao-Yao ; Du, Hao ; Liu, Yao ; Lei, Jun ; Luo, En ; Cardon, Ludwig ; Edeleva, Mariya ; Huang, Shi-Shu ; Xu, Jia-Zhuang ; Li, Zhong-Ming</creator><creatorcontrib>Jiang, Kai ; Wang, Kai ; Luo, Chuan ; Su, Biao-Yao ; Du, Hao ; Liu, Yao ; Lei, Jun ; Luo, En ; Cardon, Ludwig ; Edeleva, Mariya ; Huang, Shi-Shu ; Xu, Jia-Zhuang ; Li, Zhong-Ming</creatorcontrib><description>The effective regeneration of large bone defects via bone tissue engineering is challenging due to the difficulty in creating an osteogenic microenvironment. Inspired by the fibrillar architecture of the natural extracellular matrix, we developed a nanoscale bioengineering strategy to produce bone fibril-like composite scaffolds with enhanced osteogenic capability. To activate the surface for biofunctionalization, self-adaptive ridge-like nanolamellae were constructed on poly­(ε-caprolactone) (PCL) electrospinning scaffolds via surface-directed epitaxial crystallization. This unique nanotopography with a markedly increased specific surface area offered abundant nucleation sites for Ca2+ recruitment, leading to a 5-fold greater deposition weight of hydroxyapatite than that of the pristine PCL scaffold under stimulated physiological conditions. Bone marrow mesenchymal stem cells (BMSCs) cultured on bone fibril-like scaffolds exhibited enhanced adhesion, proliferation, and osteogenic differentiation in vitro. In a rat calvarial defect model, the bone fibril-like scaffold significantly accelerated bone regeneration, as evidenced by micro-CT, histological histological and immunofluorescence staining. This work provides the way for recapitulating the osteogenic microenvironment in tissue-engineered scaffolds for bone repair.</description><identifier>ISSN: 1525-7797</identifier><identifier>ISSN: 1526-4602</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/acs.biomac.4c00378</identifier><identifier>PMID: 38743836</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>adhesion ; Animals ; Biomimetic Materials - chemistry ; Biomimetic Materials - pharmacology ; biomimetics ; bone formation ; bone marrow ; Bone Regeneration - drug effects ; calcium ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; crystallization ; Durapatite - chemistry ; Durapatite - pharmacology ; extracellular matrix ; fluorescent antibody technique ; histology ; hydroxyapatite ; Mesenchymal Stem Cells - cytology ; micro-computed tomography ; mineralization ; nanomaterials ; Osteogenesis - drug effects ; Osteogenesis - physiology ; Polyesters - chemistry ; Rats ; Rats, Sprague-Dawley ; Skull - injuries ; Skull - pathology ; surface area ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Biomacromolecules, 2024-06, Vol.25 (6), p.3784-3794</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a326t-2d8a056bc2d50d65c764844eb278b7c39be1300687f341c57d27f10a054fedbb3</cites><orcidid>0000-0002-4019-612X ; 0000-0001-7203-1453 ; 0000-0001-6803-5216 ; 0000-0001-9888-7014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biomac.4c00378$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biomac.4c00378$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38743836$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Kai</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Luo, Chuan</creatorcontrib><creatorcontrib>Su, Biao-Yao</creatorcontrib><creatorcontrib>Du, Hao</creatorcontrib><creatorcontrib>Liu, Yao</creatorcontrib><creatorcontrib>Lei, Jun</creatorcontrib><creatorcontrib>Luo, En</creatorcontrib><creatorcontrib>Cardon, Ludwig</creatorcontrib><creatorcontrib>Edeleva, Mariya</creatorcontrib><creatorcontrib>Huang, Shi-Shu</creatorcontrib><creatorcontrib>Xu, Jia-Zhuang</creatorcontrib><creatorcontrib>Li, Zhong-Ming</creatorcontrib><title>A Biomimetic Fibrous Composite Scaffold with Nanotopography-Regulated Mineralization for Bone Defect Repair</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>The effective regeneration of large bone defects via bone tissue engineering is challenging due to the difficulty in creating an osteogenic microenvironment. Inspired by the fibrillar architecture of the natural extracellular matrix, we developed a nanoscale bioengineering strategy to produce bone fibril-like composite scaffolds with enhanced osteogenic capability. To activate the surface for biofunctionalization, self-adaptive ridge-like nanolamellae were constructed on poly­(ε-caprolactone) (PCL) electrospinning scaffolds via surface-directed epitaxial crystallization. This unique nanotopography with a markedly increased specific surface area offered abundant nucleation sites for Ca2+ recruitment, leading to a 5-fold greater deposition weight of hydroxyapatite than that of the pristine PCL scaffold under stimulated physiological conditions. Bone marrow mesenchymal stem cells (BMSCs) cultured on bone fibril-like scaffolds exhibited enhanced adhesion, proliferation, and osteogenic differentiation in vitro. In a rat calvarial defect model, the bone fibril-like scaffold significantly accelerated bone regeneration, as evidenced by micro-CT, histological histological and immunofluorescence staining. This work provides the way for recapitulating the osteogenic microenvironment in tissue-engineered scaffolds for bone repair.</description><subject>adhesion</subject><subject>Animals</subject><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetic Materials - pharmacology</subject><subject>biomimetics</subject><subject>bone formation</subject><subject>bone marrow</subject><subject>Bone Regeneration - drug effects</subject><subject>calcium</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>crystallization</subject><subject>Durapatite - chemistry</subject><subject>Durapatite - pharmacology</subject><subject>extracellular matrix</subject><subject>fluorescent antibody technique</subject><subject>histology</subject><subject>hydroxyapatite</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>micro-computed tomography</subject><subject>mineralization</subject><subject>nanomaterials</subject><subject>Osteogenesis - drug effects</subject><subject>Osteogenesis - physiology</subject><subject>Polyesters - chemistry</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Skull - injuries</subject><subject>Skull - pathology</subject><subject>surface area</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1525-7797</issn><issn>1526-4602</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0E6vcf4IB85JLF3_Ye24UWpAJSac-R7YxblyQOtqOq_Pqm3YUjnGYOz_tKMw9CbylZUcLoB-vLysU0WL8SnhCuzSt0QCVTjVCEvX7ZZaP1Wu-jw1LuCSFrLuQe2udGC264OkA_T_HZUhEHqNHj8-hymgvepGFKJVbAP7wNIfUdfoj1Dn-zY6ppSrfZTnePzRXczr2t0OGvcYRs-_jb1phGHFLGZ2kE_BEC-IqvYLIxH6M3wfYFTnbzCN2cf7refG4uv1982ZxeNpYzVRvWGUukcp51knRKeq2EEQIc08Zpz9cOKCdEGR24oF7qjulAyZIRATrn-BF6v-2dcvo1Q6ntEIuHvrcjLNe1nEqumNLU_B8lUgpJjVALyraoz6mUDKGdchxsfmwpaZ99tIuPduuj3flYQu92_bMboPsb-SNgAVZb4Dl8n-Y8Lp_5V-MTMu2Y4w</recordid><startdate>20240610</startdate><enddate>20240610</enddate><creator>Jiang, Kai</creator><creator>Wang, Kai</creator><creator>Luo, Chuan</creator><creator>Su, Biao-Yao</creator><creator>Du, Hao</creator><creator>Liu, Yao</creator><creator>Lei, Jun</creator><creator>Luo, En</creator><creator>Cardon, Ludwig</creator><creator>Edeleva, Mariya</creator><creator>Huang, Shi-Shu</creator><creator>Xu, Jia-Zhuang</creator><creator>Li, Zhong-Ming</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-4019-612X</orcidid><orcidid>https://orcid.org/0000-0001-7203-1453</orcidid><orcidid>https://orcid.org/0000-0001-6803-5216</orcidid><orcidid>https://orcid.org/0000-0001-9888-7014</orcidid></search><sort><creationdate>20240610</creationdate><title>A Biomimetic Fibrous Composite Scaffold with Nanotopography-Regulated Mineralization for Bone Defect Repair</title><author>Jiang, Kai ; Wang, Kai ; Luo, Chuan ; Su, Biao-Yao ; Du, Hao ; Liu, Yao ; Lei, Jun ; Luo, En ; Cardon, Ludwig ; Edeleva, Mariya ; Huang, Shi-Shu ; Xu, Jia-Zhuang ; Li, Zhong-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a326t-2d8a056bc2d50d65c764844eb278b7c39be1300687f341c57d27f10a054fedbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adhesion</topic><topic>Animals</topic><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetic Materials - pharmacology</topic><topic>biomimetics</topic><topic>bone formation</topic><topic>bone marrow</topic><topic>Bone Regeneration - drug effects</topic><topic>calcium</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>crystallization</topic><topic>Durapatite - chemistry</topic><topic>Durapatite - pharmacology</topic><topic>extracellular matrix</topic><topic>fluorescent antibody technique</topic><topic>histology</topic><topic>hydroxyapatite</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>micro-computed tomography</topic><topic>mineralization</topic><topic>nanomaterials</topic><topic>Osteogenesis - drug effects</topic><topic>Osteogenesis - physiology</topic><topic>Polyesters - chemistry</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Skull - injuries</topic><topic>Skull - pathology</topic><topic>surface area</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Kai</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Luo, Chuan</creatorcontrib><creatorcontrib>Su, Biao-Yao</creatorcontrib><creatorcontrib>Du, Hao</creatorcontrib><creatorcontrib>Liu, Yao</creatorcontrib><creatorcontrib>Lei, Jun</creatorcontrib><creatorcontrib>Luo, En</creatorcontrib><creatorcontrib>Cardon, Ludwig</creatorcontrib><creatorcontrib>Edeleva, Mariya</creatorcontrib><creatorcontrib>Huang, Shi-Shu</creatorcontrib><creatorcontrib>Xu, Jia-Zhuang</creatorcontrib><creatorcontrib>Li, Zhong-Ming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Kai</au><au>Wang, Kai</au><au>Luo, Chuan</au><au>Su, Biao-Yao</au><au>Du, Hao</au><au>Liu, Yao</au><au>Lei, Jun</au><au>Luo, En</au><au>Cardon, Ludwig</au><au>Edeleva, Mariya</au><au>Huang, Shi-Shu</au><au>Xu, Jia-Zhuang</au><au>Li, Zhong-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Biomimetic Fibrous Composite Scaffold with Nanotopography-Regulated Mineralization for Bone Defect Repair</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2024-06-10</date><risdate>2024</risdate><volume>25</volume><issue>6</issue><spage>3784</spage><epage>3794</epage><pages>3784-3794</pages><issn>1525-7797</issn><issn>1526-4602</issn><eissn>1526-4602</eissn><abstract>The effective regeneration of large bone defects via bone tissue engineering is challenging due to the difficulty in creating an osteogenic microenvironment. Inspired by the fibrillar architecture of the natural extracellular matrix, we developed a nanoscale bioengineering strategy to produce bone fibril-like composite scaffolds with enhanced osteogenic capability. To activate the surface for biofunctionalization, self-adaptive ridge-like nanolamellae were constructed on poly­(ε-caprolactone) (PCL) electrospinning scaffolds via surface-directed epitaxial crystallization. This unique nanotopography with a markedly increased specific surface area offered abundant nucleation sites for Ca2+ recruitment, leading to a 5-fold greater deposition weight of hydroxyapatite than that of the pristine PCL scaffold under stimulated physiological conditions. Bone marrow mesenchymal stem cells (BMSCs) cultured on bone fibril-like scaffolds exhibited enhanced adhesion, proliferation, and osteogenic differentiation in vitro. In a rat calvarial defect model, the bone fibril-like scaffold significantly accelerated bone regeneration, as evidenced by micro-CT, histological histological and immunofluorescence staining. This work provides the way for recapitulating the osteogenic microenvironment in tissue-engineered scaffolds for bone repair.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38743836</pmid><doi>10.1021/acs.biomac.4c00378</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4019-612X</orcidid><orcidid>https://orcid.org/0000-0001-7203-1453</orcidid><orcidid>https://orcid.org/0000-0001-6803-5216</orcidid><orcidid>https://orcid.org/0000-0001-9888-7014</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2024-06, Vol.25 (6), p.3784-3794
issn 1525-7797
1526-4602
1526-4602
language eng
recordid cdi_proquest_miscellaneous_3153626718
source MEDLINE; ACS Publications
subjects adhesion
Animals
Biomimetic Materials - chemistry
Biomimetic Materials - pharmacology
biomimetics
bone formation
bone marrow
Bone Regeneration - drug effects
calcium
Cell Differentiation
Cell Proliferation
Cells, Cultured
crystallization
Durapatite - chemistry
Durapatite - pharmacology
extracellular matrix
fluorescent antibody technique
histology
hydroxyapatite
Mesenchymal Stem Cells - cytology
micro-computed tomography
mineralization
nanomaterials
Osteogenesis - drug effects
Osteogenesis - physiology
Polyesters - chemistry
Rats
Rats, Sprague-Dawley
Skull - injuries
Skull - pathology
surface area
Tissue Engineering - methods
Tissue Scaffolds - chemistry
title A Biomimetic Fibrous Composite Scaffold with Nanotopography-Regulated Mineralization for Bone Defect Repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A42%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Biomimetic%20Fibrous%20Composite%20Scaffold%20with%20Nanotopography-Regulated%20Mineralization%20for%20Bone%20Defect%20Repair&rft.jtitle=Biomacromolecules&rft.au=Jiang,%20Kai&rft.date=2024-06-10&rft.volume=25&rft.issue=6&rft.spage=3784&rft.epage=3794&rft.pages=3784-3794&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/acs.biomac.4c00378&rft_dat=%3Cproquest_cross%3E3153626718%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055451846&rft_id=info:pmid/38743836&rfr_iscdi=true