Oxygen Isotopologues Resolved from Water Oxidation Electrocatalysis by Electron Paramagnetic Resonance Spectroscopy
Electrocatalytic water oxidation is a key transformation in many strategies designed to harness solar energy and store it as chemical fuels. Understanding the mechanism(s) of the best electrocatalysts for water oxidation has been a fundamental chemical challenge for decades. Here, we quantitate evol...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2024-06, Vol.146 (22), p.15019-15026 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15026 |
---|---|
container_issue | 22 |
container_start_page | 15019 |
container_title | Journal of the American Chemical Society |
container_volume | 146 |
creator | Nguyen, Trisha T. Sayler, Richard I. Shoemaker, Aaron H. Zhang, Jibo Stoll, Stefan Winkler, Jay R. Britt, R. David Hunter, Bryan M. |
description | Electrocatalytic water oxidation is a key transformation in many strategies designed to harness solar energy and store it as chemical fuels. Understanding the mechanism(s) of the best electrocatalysts for water oxidation has been a fundamental chemical challenge for decades. Here, we quantitate evolved dioxygen isotopologue composition via gas-phase EPR spectroscopy to elucidate the mechanisms of water oxidation on metal oxide electrocatalysts with high precision. Isotope fractionation is paired with computational and kinetic modeling, showing that this technique is sensitive enough to differentiate O–O bond-forming steps. Strong agreement between experiment and theory indicates that for the nickel-iron layered double hydroxideone of the best earth-abundant electrocatalysts to be studiedwater oxidation proceeds via a dioxo coupling mechanism to form a side-bound peroxide rather than a hydroxide attack to form an end-bound peroxide. |
doi_str_mv | 10.1021/jacs.3c13868 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153623151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055451548</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-5bb96f65ca05d96414a81da69c896d0c6c22093f3e933ad3f37b0d89f98f0b843</originalsourceid><addsrcrecordid>eNqFkbtPwzAQxi0EouWxMSOPDKTYcezYI6oKVKpUxEOM0cVxqlRJHOwUNf896QsWJJa78_l3n3X-ELqiZERJSO-WoP2IacqkkEdoSHlIAk5DcYyGhJAwiKVgA3Tm_bI_RqGkp2jAZByxmKoh8vN1tzA1nnrb2saWdrEyHr8Yb8svk-Hc2Qp_QGscnq-LDNrC1nhSGt06q6GFsvOFx2l36NX4GRxUsKhNW-itTg21Nvi12d57bZvuAp3kUHpzuc_n6P1h8jZ-Cmbzx-n4fhYAo1Eb8DRVIhdcA-GZEhGNQNIMhNJSiYxoocOQKJYzoxiDrC_ilGRS5UrmJJURO0c3O93G2c9-rTapCq9NWUJt7MonjHImwj7S_1HCecQpj2SP3u5Q3a_jncmTxhUVuC6hJNk4kmwcSfaO9Pj1XnmVVib7gQ8W_D69mVralav7P_lb6xva8ZYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055451548</pqid></control><display><type>article</type><title>Oxygen Isotopologues Resolved from Water Oxidation Electrocatalysis by Electron Paramagnetic Resonance Spectroscopy</title><source>ACS Publications</source><creator>Nguyen, Trisha T. ; Sayler, Richard I. ; Shoemaker, Aaron H. ; Zhang, Jibo ; Stoll, Stefan ; Winkler, Jay R. ; Britt, R. David ; Hunter, Bryan M.</creator><creatorcontrib>Nguyen, Trisha T. ; Sayler, Richard I. ; Shoemaker, Aaron H. ; Zhang, Jibo ; Stoll, Stefan ; Winkler, Jay R. ; Britt, R. David ; Hunter, Bryan M.</creatorcontrib><description>Electrocatalytic water oxidation is a key transformation in many strategies designed to harness solar energy and store it as chemical fuels. Understanding the mechanism(s) of the best electrocatalysts for water oxidation has been a fundamental chemical challenge for decades. Here, we quantitate evolved dioxygen isotopologue composition via gas-phase EPR spectroscopy to elucidate the mechanisms of water oxidation on metal oxide electrocatalysts with high precision. Isotope fractionation is paired with computational and kinetic modeling, showing that this technique is sensitive enough to differentiate O–O bond-forming steps. Strong agreement between experiment and theory indicates that for the nickel-iron layered double hydroxideone of the best earth-abundant electrocatalysts to be studiedwater oxidation proceeds via a dioxo coupling mechanism to form a side-bound peroxide rather than a hydroxide attack to form an end-bound peroxide.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c13868</identifier><identifier>PMID: 38743719</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>electron paramagnetic resonance spectroscopy ; isotope fractionation ; oxidation ; oxygen ; solar energy</subject><ispartof>Journal of the American Chemical Society, 2024-06, Vol.146 (22), p.15019-15026</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a314t-5bb96f65ca05d96414a81da69c896d0c6c22093f3e933ad3f37b0d89f98f0b843</cites><orcidid>0000-0003-0889-8436 ; 0000-0002-4453-9716 ; 0000-0001-8559-9304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.3c13868$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.3c13868$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38743719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Trisha T.</creatorcontrib><creatorcontrib>Sayler, Richard I.</creatorcontrib><creatorcontrib>Shoemaker, Aaron H.</creatorcontrib><creatorcontrib>Zhang, Jibo</creatorcontrib><creatorcontrib>Stoll, Stefan</creatorcontrib><creatorcontrib>Winkler, Jay R.</creatorcontrib><creatorcontrib>Britt, R. David</creatorcontrib><creatorcontrib>Hunter, Bryan M.</creatorcontrib><title>Oxygen Isotopologues Resolved from Water Oxidation Electrocatalysis by Electron Paramagnetic Resonance Spectroscopy</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Electrocatalytic water oxidation is a key transformation in many strategies designed to harness solar energy and store it as chemical fuels. Understanding the mechanism(s) of the best electrocatalysts for water oxidation has been a fundamental chemical challenge for decades. Here, we quantitate evolved dioxygen isotopologue composition via gas-phase EPR spectroscopy to elucidate the mechanisms of water oxidation on metal oxide electrocatalysts with high precision. Isotope fractionation is paired with computational and kinetic modeling, showing that this technique is sensitive enough to differentiate O–O bond-forming steps. Strong agreement between experiment and theory indicates that for the nickel-iron layered double hydroxideone of the best earth-abundant electrocatalysts to be studiedwater oxidation proceeds via a dioxo coupling mechanism to form a side-bound peroxide rather than a hydroxide attack to form an end-bound peroxide.</description><subject>electron paramagnetic resonance spectroscopy</subject><subject>isotope fractionation</subject><subject>oxidation</subject><subject>oxygen</subject><subject>solar energy</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkbtPwzAQxi0EouWxMSOPDKTYcezYI6oKVKpUxEOM0cVxqlRJHOwUNf896QsWJJa78_l3n3X-ELqiZERJSO-WoP2IacqkkEdoSHlIAk5DcYyGhJAwiKVgA3Tm_bI_RqGkp2jAZByxmKoh8vN1tzA1nnrb2saWdrEyHr8Yb8svk-Hc2Qp_QGscnq-LDNrC1nhSGt06q6GFsvOFx2l36NX4GRxUsKhNW-itTg21Nvi12d57bZvuAp3kUHpzuc_n6P1h8jZ-Cmbzx-n4fhYAo1Eb8DRVIhdcA-GZEhGNQNIMhNJSiYxoocOQKJYzoxiDrC_ilGRS5UrmJJURO0c3O93G2c9-rTapCq9NWUJt7MonjHImwj7S_1HCecQpj2SP3u5Q3a_jncmTxhUVuC6hJNk4kmwcSfaO9Pj1XnmVVib7gQ8W_D69mVralav7P_lb6xva8ZYw</recordid><startdate>20240605</startdate><enddate>20240605</enddate><creator>Nguyen, Trisha T.</creator><creator>Sayler, Richard I.</creator><creator>Shoemaker, Aaron H.</creator><creator>Zhang, Jibo</creator><creator>Stoll, Stefan</creator><creator>Winkler, Jay R.</creator><creator>Britt, R. David</creator><creator>Hunter, Bryan M.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-0889-8436</orcidid><orcidid>https://orcid.org/0000-0002-4453-9716</orcidid><orcidid>https://orcid.org/0000-0001-8559-9304</orcidid></search><sort><creationdate>20240605</creationdate><title>Oxygen Isotopologues Resolved from Water Oxidation Electrocatalysis by Electron Paramagnetic Resonance Spectroscopy</title><author>Nguyen, Trisha T. ; Sayler, Richard I. ; Shoemaker, Aaron H. ; Zhang, Jibo ; Stoll, Stefan ; Winkler, Jay R. ; Britt, R. David ; Hunter, Bryan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-5bb96f65ca05d96414a81da69c896d0c6c22093f3e933ad3f37b0d89f98f0b843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>electron paramagnetic resonance spectroscopy</topic><topic>isotope fractionation</topic><topic>oxidation</topic><topic>oxygen</topic><topic>solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Trisha T.</creatorcontrib><creatorcontrib>Sayler, Richard I.</creatorcontrib><creatorcontrib>Shoemaker, Aaron H.</creatorcontrib><creatorcontrib>Zhang, Jibo</creatorcontrib><creatorcontrib>Stoll, Stefan</creatorcontrib><creatorcontrib>Winkler, Jay R.</creatorcontrib><creatorcontrib>Britt, R. David</creatorcontrib><creatorcontrib>Hunter, Bryan M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Trisha T.</au><au>Sayler, Richard I.</au><au>Shoemaker, Aaron H.</au><au>Zhang, Jibo</au><au>Stoll, Stefan</au><au>Winkler, Jay R.</au><au>Britt, R. David</au><au>Hunter, Bryan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Isotopologues Resolved from Water Oxidation Electrocatalysis by Electron Paramagnetic Resonance Spectroscopy</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-06-05</date><risdate>2024</risdate><volume>146</volume><issue>22</issue><spage>15019</spage><epage>15026</epage><pages>15019-15026</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Electrocatalytic water oxidation is a key transformation in many strategies designed to harness solar energy and store it as chemical fuels. Understanding the mechanism(s) of the best electrocatalysts for water oxidation has been a fundamental chemical challenge for decades. Here, we quantitate evolved dioxygen isotopologue composition via gas-phase EPR spectroscopy to elucidate the mechanisms of water oxidation on metal oxide electrocatalysts with high precision. Isotope fractionation is paired with computational and kinetic modeling, showing that this technique is sensitive enough to differentiate O–O bond-forming steps. Strong agreement between experiment and theory indicates that for the nickel-iron layered double hydroxideone of the best earth-abundant electrocatalysts to be studiedwater oxidation proceeds via a dioxo coupling mechanism to form a side-bound peroxide rather than a hydroxide attack to form an end-bound peroxide.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38743719</pmid><doi>10.1021/jacs.3c13868</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0889-8436</orcidid><orcidid>https://orcid.org/0000-0002-4453-9716</orcidid><orcidid>https://orcid.org/0000-0001-8559-9304</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2024-06, Vol.146 (22), p.15019-15026 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153623151 |
source | ACS Publications |
subjects | electron paramagnetic resonance spectroscopy isotope fractionation oxidation oxygen solar energy |
title | Oxygen Isotopologues Resolved from Water Oxidation Electrocatalysis by Electron Paramagnetic Resonance Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A31%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Isotopologues%20Resolved%20from%20Water%20Oxidation%20Electrocatalysis%20by%20Electron%20Paramagnetic%20Resonance%20Spectroscopy&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Nguyen,%20Trisha%20T.&rft.date=2024-06-05&rft.volume=146&rft.issue=22&rft.spage=15019&rft.epage=15026&rft.pages=15019-15026&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c13868&rft_dat=%3Cproquest_cross%3E3055451548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055451548&rft_id=info:pmid/38743719&rfr_iscdi=true |