Oxygen Isotopologues Resolved from Water Oxidation Electrocatalysis by Electron Paramagnetic Resonance Spectroscopy

Electrocatalytic water oxidation is a key transformation in many strategies designed to harness solar energy and store it as chemical fuels. Understanding the mechanism(s) of the best electrocatalysts for water oxidation has been a fundamental chemical challenge for decades. Here, we quantitate evol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-06, Vol.146 (22), p.15019-15026
Hauptverfasser: Nguyen, Trisha T., Sayler, Richard I., Shoemaker, Aaron H., Zhang, Jibo, Stoll, Stefan, Winkler, Jay R., Britt, R. David, Hunter, Bryan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15026
container_issue 22
container_start_page 15019
container_title Journal of the American Chemical Society
container_volume 146
creator Nguyen, Trisha T.
Sayler, Richard I.
Shoemaker, Aaron H.
Zhang, Jibo
Stoll, Stefan
Winkler, Jay R.
Britt, R. David
Hunter, Bryan M.
description Electrocatalytic water oxidation is a key transformation in many strategies designed to harness solar energy and store it as chemical fuels. Understanding the mechanism(s) of the best electrocatalysts for water oxidation has been a fundamental chemical challenge for decades. Here, we quantitate evolved dioxygen isotopologue composition via gas-phase EPR spectroscopy to elucidate the mechanisms of water oxidation on metal oxide electrocatalysts with high precision. Isotope fractionation is paired with computational and kinetic modeling, showing that this technique is sensitive enough to differentiate O–O bond-forming steps. Strong agreement between experiment and theory indicates that for the nickel-iron layered double hydroxideone of the best earth-abundant electrocatalysts to be studiedwater oxidation proceeds via a dioxo coupling mechanism to form a side-bound peroxide rather than a hydroxide attack to form an end-bound peroxide.
doi_str_mv 10.1021/jacs.3c13868
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153623151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055451548</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-5bb96f65ca05d96414a81da69c896d0c6c22093f3e933ad3f37b0d89f98f0b843</originalsourceid><addsrcrecordid>eNqFkbtPwzAQxi0EouWxMSOPDKTYcezYI6oKVKpUxEOM0cVxqlRJHOwUNf896QsWJJa78_l3n3X-ELqiZERJSO-WoP2IacqkkEdoSHlIAk5DcYyGhJAwiKVgA3Tm_bI_RqGkp2jAZByxmKoh8vN1tzA1nnrb2saWdrEyHr8Yb8svk-Hc2Qp_QGscnq-LDNrC1nhSGt06q6GFsvOFx2l36NX4GRxUsKhNW-itTg21Nvi12d57bZvuAp3kUHpzuc_n6P1h8jZ-Cmbzx-n4fhYAo1Eb8DRVIhdcA-GZEhGNQNIMhNJSiYxoocOQKJYzoxiDrC_ilGRS5UrmJJURO0c3O93G2c9-rTapCq9NWUJt7MonjHImwj7S_1HCecQpj2SP3u5Q3a_jncmTxhUVuC6hJNk4kmwcSfaO9Pj1XnmVVib7gQ8W_D69mVralav7P_lb6xva8ZYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055451548</pqid></control><display><type>article</type><title>Oxygen Isotopologues Resolved from Water Oxidation Electrocatalysis by Electron Paramagnetic Resonance Spectroscopy</title><source>ACS Publications</source><creator>Nguyen, Trisha T. ; Sayler, Richard I. ; Shoemaker, Aaron H. ; Zhang, Jibo ; Stoll, Stefan ; Winkler, Jay R. ; Britt, R. David ; Hunter, Bryan M.</creator><creatorcontrib>Nguyen, Trisha T. ; Sayler, Richard I. ; Shoemaker, Aaron H. ; Zhang, Jibo ; Stoll, Stefan ; Winkler, Jay R. ; Britt, R. David ; Hunter, Bryan M.</creatorcontrib><description>Electrocatalytic water oxidation is a key transformation in many strategies designed to harness solar energy and store it as chemical fuels. Understanding the mechanism(s) of the best electrocatalysts for water oxidation has been a fundamental chemical challenge for decades. Here, we quantitate evolved dioxygen isotopologue composition via gas-phase EPR spectroscopy to elucidate the mechanisms of water oxidation on metal oxide electrocatalysts with high precision. Isotope fractionation is paired with computational and kinetic modeling, showing that this technique is sensitive enough to differentiate O–O bond-forming steps. Strong agreement between experiment and theory indicates that for the nickel-iron layered double hydroxideone of the best earth-abundant electrocatalysts to be studiedwater oxidation proceeds via a dioxo coupling mechanism to form a side-bound peroxide rather than a hydroxide attack to form an end-bound peroxide.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c13868</identifier><identifier>PMID: 38743719</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>electron paramagnetic resonance spectroscopy ; isotope fractionation ; oxidation ; oxygen ; solar energy</subject><ispartof>Journal of the American Chemical Society, 2024-06, Vol.146 (22), p.15019-15026</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a314t-5bb96f65ca05d96414a81da69c896d0c6c22093f3e933ad3f37b0d89f98f0b843</cites><orcidid>0000-0003-0889-8436 ; 0000-0002-4453-9716 ; 0000-0001-8559-9304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.3c13868$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.3c13868$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38743719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Trisha T.</creatorcontrib><creatorcontrib>Sayler, Richard I.</creatorcontrib><creatorcontrib>Shoemaker, Aaron H.</creatorcontrib><creatorcontrib>Zhang, Jibo</creatorcontrib><creatorcontrib>Stoll, Stefan</creatorcontrib><creatorcontrib>Winkler, Jay R.</creatorcontrib><creatorcontrib>Britt, R. David</creatorcontrib><creatorcontrib>Hunter, Bryan M.</creatorcontrib><title>Oxygen Isotopologues Resolved from Water Oxidation Electrocatalysis by Electron Paramagnetic Resonance Spectroscopy</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Electrocatalytic water oxidation is a key transformation in many strategies designed to harness solar energy and store it as chemical fuels. Understanding the mechanism(s) of the best electrocatalysts for water oxidation has been a fundamental chemical challenge for decades. Here, we quantitate evolved dioxygen isotopologue composition via gas-phase EPR spectroscopy to elucidate the mechanisms of water oxidation on metal oxide electrocatalysts with high precision. Isotope fractionation is paired with computational and kinetic modeling, showing that this technique is sensitive enough to differentiate O–O bond-forming steps. Strong agreement between experiment and theory indicates that for the nickel-iron layered double hydroxideone of the best earth-abundant electrocatalysts to be studiedwater oxidation proceeds via a dioxo coupling mechanism to form a side-bound peroxide rather than a hydroxide attack to form an end-bound peroxide.</description><subject>electron paramagnetic resonance spectroscopy</subject><subject>isotope fractionation</subject><subject>oxidation</subject><subject>oxygen</subject><subject>solar energy</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkbtPwzAQxi0EouWxMSOPDKTYcezYI6oKVKpUxEOM0cVxqlRJHOwUNf896QsWJJa78_l3n3X-ELqiZERJSO-WoP2IacqkkEdoSHlIAk5DcYyGhJAwiKVgA3Tm_bI_RqGkp2jAZByxmKoh8vN1tzA1nnrb2saWdrEyHr8Yb8svk-Hc2Qp_QGscnq-LDNrC1nhSGt06q6GFsvOFx2l36NX4GRxUsKhNW-itTg21Nvi12d57bZvuAp3kUHpzuc_n6P1h8jZ-Cmbzx-n4fhYAo1Eb8DRVIhdcA-GZEhGNQNIMhNJSiYxoocOQKJYzoxiDrC_ilGRS5UrmJJURO0c3O93G2c9-rTapCq9NWUJt7MonjHImwj7S_1HCecQpj2SP3u5Q3a_jncmTxhUVuC6hJNk4kmwcSfaO9Pj1XnmVVib7gQ8W_D69mVralav7P_lb6xva8ZYw</recordid><startdate>20240605</startdate><enddate>20240605</enddate><creator>Nguyen, Trisha T.</creator><creator>Sayler, Richard I.</creator><creator>Shoemaker, Aaron H.</creator><creator>Zhang, Jibo</creator><creator>Stoll, Stefan</creator><creator>Winkler, Jay R.</creator><creator>Britt, R. David</creator><creator>Hunter, Bryan M.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-0889-8436</orcidid><orcidid>https://orcid.org/0000-0002-4453-9716</orcidid><orcidid>https://orcid.org/0000-0001-8559-9304</orcidid></search><sort><creationdate>20240605</creationdate><title>Oxygen Isotopologues Resolved from Water Oxidation Electrocatalysis by Electron Paramagnetic Resonance Spectroscopy</title><author>Nguyen, Trisha T. ; Sayler, Richard I. ; Shoemaker, Aaron H. ; Zhang, Jibo ; Stoll, Stefan ; Winkler, Jay R. ; Britt, R. David ; Hunter, Bryan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-5bb96f65ca05d96414a81da69c896d0c6c22093f3e933ad3f37b0d89f98f0b843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>electron paramagnetic resonance spectroscopy</topic><topic>isotope fractionation</topic><topic>oxidation</topic><topic>oxygen</topic><topic>solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Trisha T.</creatorcontrib><creatorcontrib>Sayler, Richard I.</creatorcontrib><creatorcontrib>Shoemaker, Aaron H.</creatorcontrib><creatorcontrib>Zhang, Jibo</creatorcontrib><creatorcontrib>Stoll, Stefan</creatorcontrib><creatorcontrib>Winkler, Jay R.</creatorcontrib><creatorcontrib>Britt, R. David</creatorcontrib><creatorcontrib>Hunter, Bryan M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Trisha T.</au><au>Sayler, Richard I.</au><au>Shoemaker, Aaron H.</au><au>Zhang, Jibo</au><au>Stoll, Stefan</au><au>Winkler, Jay R.</au><au>Britt, R. David</au><au>Hunter, Bryan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Isotopologues Resolved from Water Oxidation Electrocatalysis by Electron Paramagnetic Resonance Spectroscopy</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-06-05</date><risdate>2024</risdate><volume>146</volume><issue>22</issue><spage>15019</spage><epage>15026</epage><pages>15019-15026</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Electrocatalytic water oxidation is a key transformation in many strategies designed to harness solar energy and store it as chemical fuels. Understanding the mechanism(s) of the best electrocatalysts for water oxidation has been a fundamental chemical challenge for decades. Here, we quantitate evolved dioxygen isotopologue composition via gas-phase EPR spectroscopy to elucidate the mechanisms of water oxidation on metal oxide electrocatalysts with high precision. Isotope fractionation is paired with computational and kinetic modeling, showing that this technique is sensitive enough to differentiate O–O bond-forming steps. Strong agreement between experiment and theory indicates that for the nickel-iron layered double hydroxideone of the best earth-abundant electrocatalysts to be studiedwater oxidation proceeds via a dioxo coupling mechanism to form a side-bound peroxide rather than a hydroxide attack to form an end-bound peroxide.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38743719</pmid><doi>10.1021/jacs.3c13868</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0889-8436</orcidid><orcidid>https://orcid.org/0000-0002-4453-9716</orcidid><orcidid>https://orcid.org/0000-0001-8559-9304</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2024-06, Vol.146 (22), p.15019-15026
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_proquest_miscellaneous_3153623151
source ACS Publications
subjects electron paramagnetic resonance spectroscopy
isotope fractionation
oxidation
oxygen
solar energy
title Oxygen Isotopologues Resolved from Water Oxidation Electrocatalysis by Electron Paramagnetic Resonance Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A31%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Isotopologues%20Resolved%20from%20Water%20Oxidation%20Electrocatalysis%20by%20Electron%20Paramagnetic%20Resonance%20Spectroscopy&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Nguyen,%20Trisha%20T.&rft.date=2024-06-05&rft.volume=146&rft.issue=22&rft.spage=15019&rft.epage=15026&rft.pages=15019-15026&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c13868&rft_dat=%3Cproquest_cross%3E3055451548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055451548&rft_id=info:pmid/38743719&rfr_iscdi=true