3D-GhostNet: A novel spatial-spectral algorithm to improve foodborne bacteria classification coupled with hyperspectral microscopic imaging technology

A novel 3D-GhostNet has been developed for hyperspectral microscopic imaging (HMI) data analysis to improve classification of foodborne pathogens. The HMI, leveraging microscopic technology, surpasses traditional spectral imaging in terms of sensitivity and resolution by utilizing visible/near-infra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2024-07, Vol.411, p.135706, Article 135706
Hauptverfasser: Kang, Rui, Sun, Shangpeng, Ouyang, Qin, Huang, Jiaxing, Park, Bosoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 135706
container_title Sensors and actuators. B, Chemical
container_volume 411
creator Kang, Rui
Sun, Shangpeng
Ouyang, Qin
Huang, Jiaxing
Park, Bosoon
description A novel 3D-GhostNet has been developed for hyperspectral microscopic imaging (HMI) data analysis to improve classification of foodborne pathogens. The HMI, leveraging microscopic technology, surpasses traditional spectral imaging in terms of sensitivity and resolution by utilizing visible/near-infrared spectroscopy integrated with high-resolution single-cell images. The newly constructed 3D-Ghost network directly processes and recognizes single-cell hypercube, enables HMI technology to become near-real-time detection by combining with automated data processing pipeline. 3D-GhostNet incorporates Ghost modules as its backbone and adds convolutional block attention module (CBAM) for adaptively extracting high-dimensional depth spatial-spectral information. In the task of identifying four different foodborne bacteria cells, our 3D-GhostNet achieved 100% accuracy, surpassing spectral-only-based (SOB) classifiers such as linear discriminant analysis (LDA, 89.7%), support vector machine (SVM, 93.9%), 1D convolutional neural network (1D-CNN, 98%), and long short-term memory (LSTM, 98.5%). Furthermore, our independent blind test results indicate that 3D-GhostNet remains robust for identifying complex mixtures of pathogens. As a label-free detection tool, 3D-GhostNet-assisted HMI technology is fully competent in classification of different foodborne pathogens, suggesting broad applications in food safety and quality. [Display omitted] •HMI technology facilitates spectral profiling of live bacteria cells.•3D-GhostNet directly classifies hypercubes from bacteria cells.•High-dimensional spatial-spectral features enhance the robustness of pathogen identification model.
doi_str_mv 10.1016/j.snb.2024.135706
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153622966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400524004350</els_id><sourcerecordid>3153622966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-3cd1047cc3a53a3472bbd0dfe71de4c6404302e177f1a5817db1d292b0888ee23</originalsourceid><addsrcrecordid>eNp9kUFvEzEQhS0EEqHwA7j5yGXD2N5db-BUFShIFVzas-UdzyaOnPViO0X5I_29dRTEkdNc3vf03jzG3gtYCxD9x_06z-NagmzXQnUa-hdsJQatGgVav2Qr2MiuaQG61-xNznsAaFUPK_akvjS3u5jLTyqf-DWf4yMFnhdbvA1NXghLsoHbsI3Jl92Bl8j9YUlVxqcY3RjTTHy0WCh5yzHYnP3ksfJx5hiPSyDH_1SU704LpX-OB48pZoyLx2pot37e8kK4m2OI29Nb9mqyIdO7v_eKPXz7en_zvbn7dfvj5vquQTnI0ih0AlqNqGynrGq1HEcHbiItHLXYt7UlSBJaT8J2g9BuFE5u5AjDMBBJdcU-XHxro99HysUcfEYKwc4Uj9ko0aleyk3fV6m4SM-5c6LJLKkGTycjwJw3MHtTNzDnDcxlg8p8vjBUOzx6SiajpxnJ-VT_YFz0_6GfAfbekvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153622966</pqid></control><display><type>article</type><title>3D-GhostNet: A novel spatial-spectral algorithm to improve foodborne bacteria classification coupled with hyperspectral microscopic imaging technology</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kang, Rui ; Sun, Shangpeng ; Ouyang, Qin ; Huang, Jiaxing ; Park, Bosoon</creator><creatorcontrib>Kang, Rui ; Sun, Shangpeng ; Ouyang, Qin ; Huang, Jiaxing ; Park, Bosoon</creatorcontrib><description>A novel 3D-GhostNet has been developed for hyperspectral microscopic imaging (HMI) data analysis to improve classification of foodborne pathogens. The HMI, leveraging microscopic technology, surpasses traditional spectral imaging in terms of sensitivity and resolution by utilizing visible/near-infrared spectroscopy integrated with high-resolution single-cell images. The newly constructed 3D-Ghost network directly processes and recognizes single-cell hypercube, enables HMI technology to become near-real-time detection by combining with automated data processing pipeline. 3D-GhostNet incorporates Ghost modules as its backbone and adds convolutional block attention module (CBAM) for adaptively extracting high-dimensional depth spatial-spectral information. In the task of identifying four different foodborne bacteria cells, our 3D-GhostNet achieved 100% accuracy, surpassing spectral-only-based (SOB) classifiers such as linear discriminant analysis (LDA, 89.7%), support vector machine (SVM, 93.9%), 1D convolutional neural network (1D-CNN, 98%), and long short-term memory (LSTM, 98.5%). Furthermore, our independent blind test results indicate that 3D-GhostNet remains robust for identifying complex mixtures of pathogens. As a label-free detection tool, 3D-GhostNet-assisted HMI technology is fully competent in classification of different foodborne pathogens, suggesting broad applications in food safety and quality. [Display omitted] •HMI technology facilitates spectral profiling of live bacteria cells.•3D-GhostNet directly classifies hypercubes from bacteria cells.•High-dimensional spatial-spectral features enhance the robustness of pathogen identification model.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2024.135706</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>3D hypercube classification ; automation ; data analysis ; discriminant analysis ; food safety ; Foodborne pathogen ; Hyperspectral microscope imaging ; neural networks ; Rapid detection ; spectroscopy ; support vector machines</subject><ispartof>Sensors and actuators. B, Chemical, 2024-07, Vol.411, p.135706, Article 135706</ispartof><rights>2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c282t-3cd1047cc3a53a3472bbd0dfe71de4c6404302e177f1a5817db1d292b0888ee23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925400524004350$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Kang, Rui</creatorcontrib><creatorcontrib>Sun, Shangpeng</creatorcontrib><creatorcontrib>Ouyang, Qin</creatorcontrib><creatorcontrib>Huang, Jiaxing</creatorcontrib><creatorcontrib>Park, Bosoon</creatorcontrib><title>3D-GhostNet: A novel spatial-spectral algorithm to improve foodborne bacteria classification coupled with hyperspectral microscopic imaging technology</title><title>Sensors and actuators. B, Chemical</title><description>A novel 3D-GhostNet has been developed for hyperspectral microscopic imaging (HMI) data analysis to improve classification of foodborne pathogens. The HMI, leveraging microscopic technology, surpasses traditional spectral imaging in terms of sensitivity and resolution by utilizing visible/near-infrared spectroscopy integrated with high-resolution single-cell images. The newly constructed 3D-Ghost network directly processes and recognizes single-cell hypercube, enables HMI technology to become near-real-time detection by combining with automated data processing pipeline. 3D-GhostNet incorporates Ghost modules as its backbone and adds convolutional block attention module (CBAM) for adaptively extracting high-dimensional depth spatial-spectral information. In the task of identifying four different foodborne bacteria cells, our 3D-GhostNet achieved 100% accuracy, surpassing spectral-only-based (SOB) classifiers such as linear discriminant analysis (LDA, 89.7%), support vector machine (SVM, 93.9%), 1D convolutional neural network (1D-CNN, 98%), and long short-term memory (LSTM, 98.5%). Furthermore, our independent blind test results indicate that 3D-GhostNet remains robust for identifying complex mixtures of pathogens. As a label-free detection tool, 3D-GhostNet-assisted HMI technology is fully competent in classification of different foodborne pathogens, suggesting broad applications in food safety and quality. [Display omitted] •HMI technology facilitates spectral profiling of live bacteria cells.•3D-GhostNet directly classifies hypercubes from bacteria cells.•High-dimensional spatial-spectral features enhance the robustness of pathogen identification model.</description><subject>3D hypercube classification</subject><subject>automation</subject><subject>data analysis</subject><subject>discriminant analysis</subject><subject>food safety</subject><subject>Foodborne pathogen</subject><subject>Hyperspectral microscope imaging</subject><subject>neural networks</subject><subject>Rapid detection</subject><subject>spectroscopy</subject><subject>support vector machines</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUFvEzEQhS0EEqHwA7j5yGXD2N5db-BUFShIFVzas-UdzyaOnPViO0X5I_29dRTEkdNc3vf03jzG3gtYCxD9x_06z-NagmzXQnUa-hdsJQatGgVav2Qr2MiuaQG61-xNznsAaFUPK_akvjS3u5jLTyqf-DWf4yMFnhdbvA1NXghLsoHbsI3Jl92Bl8j9YUlVxqcY3RjTTHy0WCh5yzHYnP3ksfJx5hiPSyDH_1SU704LpX-OB48pZoyLx2pot37e8kK4m2OI29Nb9mqyIdO7v_eKPXz7en_zvbn7dfvj5vquQTnI0ih0AlqNqGynrGq1HEcHbiItHLXYt7UlSBJaT8J2g9BuFE5u5AjDMBBJdcU-XHxro99HysUcfEYKwc4Uj9ko0aleyk3fV6m4SM-5c6LJLKkGTycjwJw3MHtTNzDnDcxlg8p8vjBUOzx6SiajpxnJ-VT_YFz0_6GfAfbekvg</recordid><startdate>20240715</startdate><enddate>20240715</enddate><creator>Kang, Rui</creator><creator>Sun, Shangpeng</creator><creator>Ouyang, Qin</creator><creator>Huang, Jiaxing</creator><creator>Park, Bosoon</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240715</creationdate><title>3D-GhostNet: A novel spatial-spectral algorithm to improve foodborne bacteria classification coupled with hyperspectral microscopic imaging technology</title><author>Kang, Rui ; Sun, Shangpeng ; Ouyang, Qin ; Huang, Jiaxing ; Park, Bosoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-3cd1047cc3a53a3472bbd0dfe71de4c6404302e177f1a5817db1d292b0888ee23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D hypercube classification</topic><topic>automation</topic><topic>data analysis</topic><topic>discriminant analysis</topic><topic>food safety</topic><topic>Foodborne pathogen</topic><topic>Hyperspectral microscope imaging</topic><topic>neural networks</topic><topic>Rapid detection</topic><topic>spectroscopy</topic><topic>support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Rui</creatorcontrib><creatorcontrib>Sun, Shangpeng</creatorcontrib><creatorcontrib>Ouyang, Qin</creatorcontrib><creatorcontrib>Huang, Jiaxing</creatorcontrib><creatorcontrib>Park, Bosoon</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Rui</au><au>Sun, Shangpeng</au><au>Ouyang, Qin</au><au>Huang, Jiaxing</au><au>Park, Bosoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D-GhostNet: A novel spatial-spectral algorithm to improve foodborne bacteria classification coupled with hyperspectral microscopic imaging technology</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2024-07-15</date><risdate>2024</risdate><volume>411</volume><spage>135706</spage><pages>135706-</pages><artnum>135706</artnum><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>A novel 3D-GhostNet has been developed for hyperspectral microscopic imaging (HMI) data analysis to improve classification of foodborne pathogens. The HMI, leveraging microscopic technology, surpasses traditional spectral imaging in terms of sensitivity and resolution by utilizing visible/near-infrared spectroscopy integrated with high-resolution single-cell images. The newly constructed 3D-Ghost network directly processes and recognizes single-cell hypercube, enables HMI technology to become near-real-time detection by combining with automated data processing pipeline. 3D-GhostNet incorporates Ghost modules as its backbone and adds convolutional block attention module (CBAM) for adaptively extracting high-dimensional depth spatial-spectral information. In the task of identifying four different foodborne bacteria cells, our 3D-GhostNet achieved 100% accuracy, surpassing spectral-only-based (SOB) classifiers such as linear discriminant analysis (LDA, 89.7%), support vector machine (SVM, 93.9%), 1D convolutional neural network (1D-CNN, 98%), and long short-term memory (LSTM, 98.5%). Furthermore, our independent blind test results indicate that 3D-GhostNet remains robust for identifying complex mixtures of pathogens. As a label-free detection tool, 3D-GhostNet-assisted HMI technology is fully competent in classification of different foodborne pathogens, suggesting broad applications in food safety and quality. [Display omitted] •HMI technology facilitates spectral profiling of live bacteria cells.•3D-GhostNet directly classifies hypercubes from bacteria cells.•High-dimensional spatial-spectral features enhance the robustness of pathogen identification model.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2024.135706</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2024-07, Vol.411, p.135706, Article 135706
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_miscellaneous_3153622966
source Elsevier ScienceDirect Journals Complete
subjects 3D hypercube classification
automation
data analysis
discriminant analysis
food safety
Foodborne pathogen
Hyperspectral microscope imaging
neural networks
Rapid detection
spectroscopy
support vector machines
title 3D-GhostNet: A novel spatial-spectral algorithm to improve foodborne bacteria classification coupled with hyperspectral microscopic imaging technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A58%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D-GhostNet:%20A%20novel%20spatial-spectral%20algorithm%20to%20improve%20foodborne%20bacteria%20classification%20coupled%20with%20hyperspectral%20microscopic%20imaging%20technology&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Kang,%20Rui&rft.date=2024-07-15&rft.volume=411&rft.spage=135706&rft.pages=135706-&rft.artnum=135706&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2024.135706&rft_dat=%3Cproquest_cross%3E3153622966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153622966&rft_id=info:pmid/&rft_els_id=S0925400524004350&rfr_iscdi=true