A facile synthesis of flower-like NiCo-LDH for high specific capacitance pseudosupercapacitor positive materials
The original MOFs exhibit poor electrochemical performance when used as electrode materials for supercapacitors. To improve their conductivity and stability, in situ growth of high specific capacitance and conductivity layered double hydroxide (LDH) on the MOFs surface is an ideal approach. In this...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2024-03, Vol.59 (10), p.4225-4235 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4235 |
---|---|
container_issue | 10 |
container_start_page | 4225 |
container_title | Journal of materials science |
container_volume | 59 |
creator | Yang, Xingchen Fan, Zhitian Ni, Rui Zheng, Long Lu, Haiyan |
description | The original MOFs exhibit poor electrochemical performance when used as electrode materials for supercapacitors. To improve their conductivity and stability, in situ growth of high specific capacitance and conductivity layered double hydroxide (LDH) on the MOFs surface is an ideal approach. In this study, we employed the MOF as a template and employed a secondary hydrothermal synthesis method to enable in situ growth of NiCo-LDH on the surface of the MOF. The utilization of the MOF template enhances the stability of NiCo-LDH, while the flower-like structure of LDH exposes more active sites. By optimizing the Ni:Co molar ratio to 1:2 and the urea:NH
4
F molar ratio to 2:1, the resulting material exhibits higher specific capacitance and improved cycle stability. Specifically, at a current density of 1 A g
−1
, the specific capacitance reaches 1674 F g
−1
. At a current density of 5 A g
−1
, the capacity retention rate after 2000 cycles is 80%. When NiCo-LDH/HKUST-1 is assembled with activated carbon as a supercapacitor, it exhibits a significant energy density of 33.96 Wh kg
−1
and a power density of 745.4 W kg
−1
. This work provides a novel approach for utilizing MOF-based composite materials as positive electrode materials for supercapacitors.
Graphical Abstract |
doi_str_mv | 10.1007/s10853-024-09430-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153622074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956967720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-5ba65e962a3d67fe85277714e8e4de086a8be51a6069a61756ddb0fd96c499c03</originalsourceid><addsrcrecordid>eNp9kUGLFDEQhYMoOK7-AU8BL17iVpJO0n1cRtcVBr3oOWTSlZ2sPZ021e2w_95eZ0HYg6cHxfc9Ch5jbyV8kADukiS0RgtQjYCu0SBOz9hGGqdF04J-zjYASgnVWPmSvSK6AwDjlNyw6YqnEPOAnO7H-YCUiZfE01BOWMWQfyL_mrdF7D7e8FQqP-TbA6cJY0458himVZ7DGJFPhEtfaJmwPp5XfCqU5_wb-THMWHMY6DV7kdbAN495wX5cf_q-vRG7b5-_bK92ImrQszD7YA12VgXdW5ewNco5JxtssekRWhvaPRoZLNguWOmM7fs9pL6zsem6CPqCvT_3TrX8WpBmf8wUcRjCiGUhr6XRVilwzYq-e4LelaWO63dedcZ21jn1UKjOVKyFqGLyU83HUO-9BP8wgj-P4NcR_N8R_GmV9FmiFR5vsf6r_o_1B7SHi1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956967720</pqid></control><display><type>article</type><title>A facile synthesis of flower-like NiCo-LDH for high specific capacitance pseudosupercapacitor positive materials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yang, Xingchen ; Fan, Zhitian ; Ni, Rui ; Zheng, Long ; Lu, Haiyan</creator><creatorcontrib>Yang, Xingchen ; Fan, Zhitian ; Ni, Rui ; Zheng, Long ; Lu, Haiyan</creatorcontrib><description>The original MOFs exhibit poor electrochemical performance when used as electrode materials for supercapacitors. To improve their conductivity and stability, in situ growth of high specific capacitance and conductivity layered double hydroxide (LDH) on the MOFs surface is an ideal approach. In this study, we employed the MOF as a template and employed a secondary hydrothermal synthesis method to enable in situ growth of NiCo-LDH on the surface of the MOF. The utilization of the MOF template enhances the stability of NiCo-LDH, while the flower-like structure of LDH exposes more active sites. By optimizing the Ni:Co molar ratio to 1:2 and the urea:NH
4
F molar ratio to 2:1, the resulting material exhibits higher specific capacitance and improved cycle stability. Specifically, at a current density of 1 A g
−1
, the specific capacitance reaches 1674 F g
−1
. At a current density of 5 A g
−1
, the capacity retention rate after 2000 cycles is 80%. When NiCo-LDH/HKUST-1 is assembled with activated carbon as a supercapacitor, it exhibits a significant energy density of 33.96 Wh kg
−1
and a power density of 745.4 W kg
−1
. This work provides a novel approach for utilizing MOF-based composite materials as positive electrode materials for supercapacitors.
Graphical Abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-024-09430-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activated carbon ; Capacitance ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Composite materials ; Crystallography and Scattering Methods ; Current density ; Electrochemical analysis ; electrochemical capacitors ; electrochemistry ; Electrode materials ; Electrodes ; energy density ; Energy Materials ; Hydroxides ; Intermetallic compounds ; Materials Science ; Polymer Sciences ; Solid Mechanics ; Supercapacitors ; Synthesis</subject><ispartof>Journal of materials science, 2024-03, Vol.59 (10), p.4225-4235</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-5ba65e962a3d67fe85277714e8e4de086a8be51a6069a61756ddb0fd96c499c03</cites><orcidid>0000-0001-8433-2472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-024-09430-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-024-09430-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yang, Xingchen</creatorcontrib><creatorcontrib>Fan, Zhitian</creatorcontrib><creatorcontrib>Ni, Rui</creatorcontrib><creatorcontrib>Zheng, Long</creatorcontrib><creatorcontrib>Lu, Haiyan</creatorcontrib><title>A facile synthesis of flower-like NiCo-LDH for high specific capacitance pseudosupercapacitor positive materials</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The original MOFs exhibit poor electrochemical performance when used as electrode materials for supercapacitors. To improve their conductivity and stability, in situ growth of high specific capacitance and conductivity layered double hydroxide (LDH) on the MOFs surface is an ideal approach. In this study, we employed the MOF as a template and employed a secondary hydrothermal synthesis method to enable in situ growth of NiCo-LDH on the surface of the MOF. The utilization of the MOF template enhances the stability of NiCo-LDH, while the flower-like structure of LDH exposes more active sites. By optimizing the Ni:Co molar ratio to 1:2 and the urea:NH
4
F molar ratio to 2:1, the resulting material exhibits higher specific capacitance and improved cycle stability. Specifically, at a current density of 1 A g
−1
, the specific capacitance reaches 1674 F g
−1
. At a current density of 5 A g
−1
, the capacity retention rate after 2000 cycles is 80%. When NiCo-LDH/HKUST-1 is assembled with activated carbon as a supercapacitor, it exhibits a significant energy density of 33.96 Wh kg
−1
and a power density of 745.4 W kg
−1
. This work provides a novel approach for utilizing MOF-based composite materials as positive electrode materials for supercapacitors.
Graphical Abstract</description><subject>Activated carbon</subject><subject>Capacitance</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Composite materials</subject><subject>Crystallography and Scattering Methods</subject><subject>Current density</subject><subject>Electrochemical analysis</subject><subject>electrochemical capacitors</subject><subject>electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>energy density</subject><subject>Energy Materials</subject><subject>Hydroxides</subject><subject>Intermetallic compounds</subject><subject>Materials Science</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Supercapacitors</subject><subject>Synthesis</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUGLFDEQhYMoOK7-AU8BL17iVpJO0n1cRtcVBr3oOWTSlZ2sPZ021e2w_95eZ0HYg6cHxfc9Ch5jbyV8kADukiS0RgtQjYCu0SBOz9hGGqdF04J-zjYASgnVWPmSvSK6AwDjlNyw6YqnEPOAnO7H-YCUiZfE01BOWMWQfyL_mrdF7D7e8FQqP-TbA6cJY0458himVZ7DGJFPhEtfaJmwPp5XfCqU5_wb-THMWHMY6DV7kdbAN495wX5cf_q-vRG7b5-_bK92ImrQszD7YA12VgXdW5ewNco5JxtssekRWhvaPRoZLNguWOmM7fs9pL6zsem6CPqCvT_3TrX8WpBmf8wUcRjCiGUhr6XRVilwzYq-e4LelaWO63dedcZ21jn1UKjOVKyFqGLyU83HUO-9BP8wgj-P4NcR_N8R_GmV9FmiFR5vsf6r_o_1B7SHi1s</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Yang, Xingchen</creator><creator>Fan, Zhitian</creator><creator>Ni, Rui</creator><creator>Zheng, Long</creator><creator>Lu, Haiyan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-8433-2472</orcidid></search><sort><creationdate>20240301</creationdate><title>A facile synthesis of flower-like NiCo-LDH for high specific capacitance pseudosupercapacitor positive materials</title><author>Yang, Xingchen ; Fan, Zhitian ; Ni, Rui ; Zheng, Long ; Lu, Haiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-5ba65e962a3d67fe85277714e8e4de086a8be51a6069a61756ddb0fd96c499c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activated carbon</topic><topic>Capacitance</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Composite materials</topic><topic>Crystallography and Scattering Methods</topic><topic>Current density</topic><topic>Electrochemical analysis</topic><topic>electrochemical capacitors</topic><topic>electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>energy density</topic><topic>Energy Materials</topic><topic>Hydroxides</topic><topic>Intermetallic compounds</topic><topic>Materials Science</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Supercapacitors</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xingchen</creatorcontrib><creatorcontrib>Fan, Zhitian</creatorcontrib><creatorcontrib>Ni, Rui</creatorcontrib><creatorcontrib>Zheng, Long</creatorcontrib><creatorcontrib>Lu, Haiyan</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xingchen</au><au>Fan, Zhitian</au><au>Ni, Rui</au><au>Zheng, Long</au><au>Lu, Haiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A facile synthesis of flower-like NiCo-LDH for high specific capacitance pseudosupercapacitor positive materials</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>59</volume><issue>10</issue><spage>4225</spage><epage>4235</epage><pages>4225-4235</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The original MOFs exhibit poor electrochemical performance when used as electrode materials for supercapacitors. To improve their conductivity and stability, in situ growth of high specific capacitance and conductivity layered double hydroxide (LDH) on the MOFs surface is an ideal approach. In this study, we employed the MOF as a template and employed a secondary hydrothermal synthesis method to enable in situ growth of NiCo-LDH on the surface of the MOF. The utilization of the MOF template enhances the stability of NiCo-LDH, while the flower-like structure of LDH exposes more active sites. By optimizing the Ni:Co molar ratio to 1:2 and the urea:NH
4
F molar ratio to 2:1, the resulting material exhibits higher specific capacitance and improved cycle stability. Specifically, at a current density of 1 A g
−1
, the specific capacitance reaches 1674 F g
−1
. At a current density of 5 A g
−1
, the capacity retention rate after 2000 cycles is 80%. When NiCo-LDH/HKUST-1 is assembled with activated carbon as a supercapacitor, it exhibits a significant energy density of 33.96 Wh kg
−1
and a power density of 745.4 W kg
−1
. This work provides a novel approach for utilizing MOF-based composite materials as positive electrode materials for supercapacitors.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-024-09430-w</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8433-2472</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2024-03, Vol.59 (10), p.4225-4235 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153622074 |
source | SpringerLink Journals - AutoHoldings |
subjects | Activated carbon Capacitance Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Composite materials Crystallography and Scattering Methods Current density Electrochemical analysis electrochemical capacitors electrochemistry Electrode materials Electrodes energy density Energy Materials Hydroxides Intermetallic compounds Materials Science Polymer Sciences Solid Mechanics Supercapacitors Synthesis |
title | A facile synthesis of flower-like NiCo-LDH for high specific capacitance pseudosupercapacitor positive materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A47%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20facile%20synthesis%20of%20flower-like%20NiCo-LDH%20for%20high%20specific%20capacitance%20pseudosupercapacitor%20positive%20materials&rft.jtitle=Journal%20of%20materials%20science&rft.au=Yang,%20Xingchen&rft.date=2024-03-01&rft.volume=59&rft.issue=10&rft.spage=4225&rft.epage=4235&rft.pages=4225-4235&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-024-09430-w&rft_dat=%3Cproquest_cross%3E2956967720%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956967720&rft_id=info:pmid/&rfr_iscdi=true |