A machine learning based-method to generate random circle-packed porous media with the desired porosity and permeability

The generation of digital porous media facilitates the fabrication of artificial porous media and the analysis of their properties. The past random digital porous medium generation methods are unable to generate a porous medium with a specified permeability. In this work, a new method is proposed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in water resources 2024-03, Vol.185, p.104631, Article 104631
Hauptverfasser: Li, Jianhui, Tang, Tingting, Yu, Shimin, Yu, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104631
container_title Advances in water resources
container_volume 185
creator Li, Jianhui
Tang, Tingting
Yu, Shimin
Yu, Peng
description The generation of digital porous media facilitates the fabrication of artificial porous media and the analysis of their properties. The past random digital porous medium generation methods are unable to generate a porous medium with a specified permeability. In this work, a new method is proposed to generate a random circle-packed digital porous medium with a specified porosity and permeability. Firstly, the process of generating the random circle-packed digital porous medium with a specified porosity is detailed. Secondly, the permeability of the digital porous medium is calculated by the multi-relaxation time lattice Boltzmann method. A total of 3,000 digital porous medium samples are generated, and their microstructure data and permeabilities are prepared for the training of a convolutional neural network (CNN) model, which is then applied to effectively predict the permeability of a digital porous medium. Finally, our method is elaborated and the choice of target permeability in this method is discussed. Our approach has the potential to be applied to the generation of other types of porous media. •A method for generating random circle-packed porous media with symmetry is proposed.•A CNN model is built to predict the permeability of the generated porous medium.•The trained CNN model can accurately predict the permeability.•A method to generate a porous medium with specific porosity and permeability is detailed.
doi_str_mv 10.1016/j.advwatres.2024.104631
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153619147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0309170824000186</els_id><sourcerecordid>3153619147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-5cd5cd1dedfef1a0a25714af1b79b2bac518f7d02d4b0f1978a07a325093d2e43</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKu_wRy9bE2yu83usRS_oOBFz2E2mW1T98skbe2_N2WLV2Fg4J15X2YeQu45m3HG54_bGZj9AYJDPxNMZFHN5im_IBNeSJGU81xekglLWZlwyYprcuP9ljFWZFJMyM-CtqA3tkPaILjOdmtagUeTtBg2vaGhp2vs0EFA6qAzfUu1dbrBZAD9hYYOvet3nrZoLNCDDRsaNkgNeuvOU2_DkUYrHdC1CJVtonBLrmpoPN6d-5R8Pj99LF-T1fvL23KxSrQos5Dk2sTiBk2NNQcGIpc8g5pXsqxEBTrnRS0NEyarWM1LWQCTkIqclakRmKVT8jDmDq7_3qEPqrVeY9NAh_FulfI8nfOSZzKuynFVx5u9w1oNzrbgjoozdWKttuqPtTqxViPr6FyMToyf7C065bXFTkcmDnVQprf_ZvwC_TiPKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153619147</pqid></control><display><type>article</type><title>A machine learning based-method to generate random circle-packed porous media with the desired porosity and permeability</title><source>Elsevier ScienceDirect Journals</source><creator>Li, Jianhui ; Tang, Tingting ; Yu, Shimin ; Yu, Peng</creator><creatorcontrib>Li, Jianhui ; Tang, Tingting ; Yu, Shimin ; Yu, Peng</creatorcontrib><description>The generation of digital porous media facilitates the fabrication of artificial porous media and the analysis of their properties. The past random digital porous medium generation methods are unable to generate a porous medium with a specified permeability. In this work, a new method is proposed to generate a random circle-packed digital porous medium with a specified porosity and permeability. Firstly, the process of generating the random circle-packed digital porous medium with a specified porosity is detailed. Secondly, the permeability of the digital porous medium is calculated by the multi-relaxation time lattice Boltzmann method. A total of 3,000 digital porous medium samples are generated, and their microstructure data and permeabilities are prepared for the training of a convolutional neural network (CNN) model, which is then applied to effectively predict the permeability of a digital porous medium. Finally, our method is elaborated and the choice of target permeability in this method is discussed. Our approach has the potential to be applied to the generation of other types of porous media. •A method for generating random circle-packed porous media with symmetry is proposed.•A CNN model is built to predict the permeability of the generated porous medium.•The trained CNN model can accurately predict the permeability.•A method to generate a porous medium with specific porosity and permeability is detailed.</description><identifier>ISSN: 0309-1708</identifier><identifier>EISSN: 1872-9657</identifier><identifier>DOI: 10.1016/j.advwatres.2024.104631</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Circle-packed ; Convolutional neural network ; Lattice Boltzmann method ; Machine learning ; microstructure ; neural networks ; Permeability ; porosity ; porous media ; Porous medium ; water</subject><ispartof>Advances in water resources, 2024-03, Vol.185, p.104631, Article 104631</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-5cd5cd1dedfef1a0a25714af1b79b2bac518f7d02d4b0f1978a07a325093d2e43</cites><orcidid>0000-0002-2492-2646 ; 0000-0003-2073-7512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0309170824000186$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Li, Jianhui</creatorcontrib><creatorcontrib>Tang, Tingting</creatorcontrib><creatorcontrib>Yu, Shimin</creatorcontrib><creatorcontrib>Yu, Peng</creatorcontrib><title>A machine learning based-method to generate random circle-packed porous media with the desired porosity and permeability</title><title>Advances in water resources</title><description>The generation of digital porous media facilitates the fabrication of artificial porous media and the analysis of their properties. The past random digital porous medium generation methods are unable to generate a porous medium with a specified permeability. In this work, a new method is proposed to generate a random circle-packed digital porous medium with a specified porosity and permeability. Firstly, the process of generating the random circle-packed digital porous medium with a specified porosity is detailed. Secondly, the permeability of the digital porous medium is calculated by the multi-relaxation time lattice Boltzmann method. A total of 3,000 digital porous medium samples are generated, and their microstructure data and permeabilities are prepared for the training of a convolutional neural network (CNN) model, which is then applied to effectively predict the permeability of a digital porous medium. Finally, our method is elaborated and the choice of target permeability in this method is discussed. Our approach has the potential to be applied to the generation of other types of porous media. •A method for generating random circle-packed porous media with symmetry is proposed.•A CNN model is built to predict the permeability of the generated porous medium.•The trained CNN model can accurately predict the permeability.•A method to generate a porous medium with specific porosity and permeability is detailed.</description><subject>Circle-packed</subject><subject>Convolutional neural network</subject><subject>Lattice Boltzmann method</subject><subject>Machine learning</subject><subject>microstructure</subject><subject>neural networks</subject><subject>Permeability</subject><subject>porosity</subject><subject>porous media</subject><subject>Porous medium</subject><subject>water</subject><issn>0309-1708</issn><issn>1872-9657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKu_wRy9bE2yu83usRS_oOBFz2E2mW1T98skbe2_N2WLV2Fg4J15X2YeQu45m3HG54_bGZj9AYJDPxNMZFHN5im_IBNeSJGU81xekglLWZlwyYprcuP9ljFWZFJMyM-CtqA3tkPaILjOdmtagUeTtBg2vaGhp2vs0EFA6qAzfUu1dbrBZAD9hYYOvet3nrZoLNCDDRsaNkgNeuvOU2_DkUYrHdC1CJVtonBLrmpoPN6d-5R8Pj99LF-T1fvL23KxSrQos5Dk2sTiBk2NNQcGIpc8g5pXsqxEBTrnRS0NEyarWM1LWQCTkIqclakRmKVT8jDmDq7_3qEPqrVeY9NAh_FulfI8nfOSZzKuynFVx5u9w1oNzrbgjoozdWKttuqPtTqxViPr6FyMToyf7C065bXFTkcmDnVQprf_ZvwC_TiPKw</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Li, Jianhui</creator><creator>Tang, Tingting</creator><creator>Yu, Shimin</creator><creator>Yu, Peng</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-2492-2646</orcidid><orcidid>https://orcid.org/0000-0003-2073-7512</orcidid></search><sort><creationdate>202403</creationdate><title>A machine learning based-method to generate random circle-packed porous media with the desired porosity and permeability</title><author>Li, Jianhui ; Tang, Tingting ; Yu, Shimin ; Yu, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-5cd5cd1dedfef1a0a25714af1b79b2bac518f7d02d4b0f1978a07a325093d2e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Circle-packed</topic><topic>Convolutional neural network</topic><topic>Lattice Boltzmann method</topic><topic>Machine learning</topic><topic>microstructure</topic><topic>neural networks</topic><topic>Permeability</topic><topic>porosity</topic><topic>porous media</topic><topic>Porous medium</topic><topic>water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jianhui</creatorcontrib><creatorcontrib>Tang, Tingting</creatorcontrib><creatorcontrib>Yu, Shimin</creatorcontrib><creatorcontrib>Yu, Peng</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Advances in water resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jianhui</au><au>Tang, Tingting</au><au>Yu, Shimin</au><au>Yu, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A machine learning based-method to generate random circle-packed porous media with the desired porosity and permeability</atitle><jtitle>Advances in water resources</jtitle><date>2024-03</date><risdate>2024</risdate><volume>185</volume><spage>104631</spage><pages>104631-</pages><artnum>104631</artnum><issn>0309-1708</issn><eissn>1872-9657</eissn><abstract>The generation of digital porous media facilitates the fabrication of artificial porous media and the analysis of their properties. The past random digital porous medium generation methods are unable to generate a porous medium with a specified permeability. In this work, a new method is proposed to generate a random circle-packed digital porous medium with a specified porosity and permeability. Firstly, the process of generating the random circle-packed digital porous medium with a specified porosity is detailed. Secondly, the permeability of the digital porous medium is calculated by the multi-relaxation time lattice Boltzmann method. A total of 3,000 digital porous medium samples are generated, and their microstructure data and permeabilities are prepared for the training of a convolutional neural network (CNN) model, which is then applied to effectively predict the permeability of a digital porous medium. Finally, our method is elaborated and the choice of target permeability in this method is discussed. Our approach has the potential to be applied to the generation of other types of porous media. •A method for generating random circle-packed porous media with symmetry is proposed.•A CNN model is built to predict the permeability of the generated porous medium.•The trained CNN model can accurately predict the permeability.•A method to generate a porous medium with specific porosity and permeability is detailed.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.advwatres.2024.104631</doi><orcidid>https://orcid.org/0000-0002-2492-2646</orcidid><orcidid>https://orcid.org/0000-0003-2073-7512</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0309-1708
ispartof Advances in water resources, 2024-03, Vol.185, p.104631, Article 104631
issn 0309-1708
1872-9657
language eng
recordid cdi_proquest_miscellaneous_3153619147
source Elsevier ScienceDirect Journals
subjects Circle-packed
Convolutional neural network
Lattice Boltzmann method
Machine learning
microstructure
neural networks
Permeability
porosity
porous media
Porous medium
water
title A machine learning based-method to generate random circle-packed porous media with the desired porosity and permeability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20machine%20learning%20based-method%20to%20generate%20random%20circle-packed%20porous%20media%20with%20the%20desired%20porosity%20and%20permeability&rft.jtitle=Advances%20in%20water%20resources&rft.au=Li,%20Jianhui&rft.date=2024-03&rft.volume=185&rft.spage=104631&rft.pages=104631-&rft.artnum=104631&rft.issn=0309-1708&rft.eissn=1872-9657&rft_id=info:doi/10.1016/j.advwatres.2024.104631&rft_dat=%3Cproquest_cross%3E3153619147%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153619147&rft_id=info:pmid/&rft_els_id=S0309170824000186&rfr_iscdi=true