Biomaterial Improves the Stability of Perovskite Solar Cells by Passivating Defects and Inhibiting Ion Migration

With the rapid improvement of power conversion efficiency (PCE), perovskite solar cells (PSCs) have broad application prospects and their industrialization will be the next step. Nevertheless, the performance and long-term stability of the devices are limited by the defect-induced nonradiative recom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-06, Vol.16 (24), p.31218-31227
Hauptverfasser: Liu, Zuwang, Su, Zhan, Yu, Bo, Sun, Yapeng, Zhang, Jiankai, Yu, Huangzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31227
container_issue 24
container_start_page 31218
container_title ACS applied materials & interfaces
container_volume 16
creator Liu, Zuwang
Su, Zhan
Yu, Bo
Sun, Yapeng
Zhang, Jiankai
Yu, Huangzhong
description With the rapid improvement of power conversion efficiency (PCE), perovskite solar cells (PSCs) have broad application prospects and their industrialization will be the next step. Nevertheless, the performance and long-term stability of the devices are limited by the defect-induced nonradiative recombination centers and ions’ migration inside the perovskite films. Here, usnic acid (UA), an easy-to-obtain and efficient natural biomaterial with a hydroxyl functional group (−OH) and four carbonyl groups (−CO) was added to MAPbI3 perovskite precursor to regulate the crystallization process by slowing the crystallization rate, thereby expanding the crystal size and preparing perovskite films with low defect density. In addition, UA anchors the uncoordinated Pb2+ and suppresses the migration of I-ions, which enhances the stability of the perovskite film. Consequently, an impressive PCE exceeding 20% was achieved for inverted structure MAPbI3-based PSCs. More impressively, the optimized PSCs maintained 78% of the initial PCE under air with high humidity (RH ≈ 65%, 25–30 °C) for 1000 h. UA can be extracted from the plant, usnea, making it inexpensive and easy to obtain. Our work demonstrates the application of the plant material in PSCs and their industrialization, which is significant nowadays.
doi_str_mv 10.1021/acsami.4c06285
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153618474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065273505</sourcerecordid><originalsourceid>FETCH-LOGICAL-a318t-d36b0fe697dd62fb81e043bb574dc3505b53f0a7302a3149964172b37fab80b13</originalsourceid><addsrcrecordid>eNqFkUtPwzAQhC0EolC4ckQ-IqQWPxP3COUVqYhKwDmyE6d1SeJiu5X673FJ6Q1xsrX-Zta7A8AFRkOMCL6RhZeNGbICJUTwA3CCR4wNBOHkcH9nrAdOvV8glFCC-DHoUSEYYYKcgOWdsY0M2hlZw6xZOrvWHoa5hm9BKlObsIG2glMdH_ynCbFua-ngWNe1h2oDp9J7s5bBtDN4rytdBA9lW8KsnRtlfsqZbeGLmbkI2fYMHFWy9vp8d_bBx-PD-_h5MHl9ysa3k4GkWIRBSROFKp2M0rJMSKUE1ohRpXjKyoJyxBWnFZIpRSQK2GiUMJwSRdNKKoEUpn1w1fnGkb5W2oe8Mb6Iv5attiufU8xpggVL2f8oSjhJt00jOuzQwlnvna7ypTONdJsco3wbSN4Fku8CiYLLnfdKNbrc478JROC6A6IwX9iVa-NW_nL7Bpntlbk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065273505</pqid></control><display><type>article</type><title>Biomaterial Improves the Stability of Perovskite Solar Cells by Passivating Defects and Inhibiting Ion Migration</title><source>American Chemical Society Journals</source><creator>Liu, Zuwang ; Su, Zhan ; Yu, Bo ; Sun, Yapeng ; Zhang, Jiankai ; Yu, Huangzhong</creator><creatorcontrib>Liu, Zuwang ; Su, Zhan ; Yu, Bo ; Sun, Yapeng ; Zhang, Jiankai ; Yu, Huangzhong</creatorcontrib><description>With the rapid improvement of power conversion efficiency (PCE), perovskite solar cells (PSCs) have broad application prospects and their industrialization will be the next step. Nevertheless, the performance and long-term stability of the devices are limited by the defect-induced nonradiative recombination centers and ions’ migration inside the perovskite films. Here, usnic acid (UA), an easy-to-obtain and efficient natural biomaterial with a hydroxyl functional group (−OH) and four carbonyl groups (−CO) was added to MAPbI3 perovskite precursor to regulate the crystallization process by slowing the crystallization rate, thereby expanding the crystal size and preparing perovskite films with low defect density. In addition, UA anchors the uncoordinated Pb2+ and suppresses the migration of I-ions, which enhances the stability of the perovskite film. Consequently, an impressive PCE exceeding 20% was achieved for inverted structure MAPbI3-based PSCs. More impressively, the optimized PSCs maintained 78% of the initial PCE under air with high humidity (RH ≈ 65%, 25–30 °C) for 1000 h. UA can be extracted from the plant, usnea, making it inexpensive and easy to obtain. Our work demonstrates the application of the plant material in PSCs and their industrialization, which is significant nowadays.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c06285</identifier><identifier>PMID: 38842482</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>air ; biocompatible materials ; crystallization ; Energy, Environmental, and Catalysis Applications ; humidity ; industrialization ; usnic acid</subject><ispartof>ACS applied materials &amp; interfaces, 2024-06, Vol.16 (24), p.31218-31227</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a318t-d36b0fe697dd62fb81e043bb574dc3505b53f0a7302a3149964172b37fab80b13</cites><orcidid>0000-0002-6382-4256 ; 0000-0002-0923-2321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c06285$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c06285$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38842482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Zuwang</creatorcontrib><creatorcontrib>Su, Zhan</creatorcontrib><creatorcontrib>Yu, Bo</creatorcontrib><creatorcontrib>Sun, Yapeng</creatorcontrib><creatorcontrib>Zhang, Jiankai</creatorcontrib><creatorcontrib>Yu, Huangzhong</creatorcontrib><title>Biomaterial Improves the Stability of Perovskite Solar Cells by Passivating Defects and Inhibiting Ion Migration</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>With the rapid improvement of power conversion efficiency (PCE), perovskite solar cells (PSCs) have broad application prospects and their industrialization will be the next step. Nevertheless, the performance and long-term stability of the devices are limited by the defect-induced nonradiative recombination centers and ions’ migration inside the perovskite films. Here, usnic acid (UA), an easy-to-obtain and efficient natural biomaterial with a hydroxyl functional group (−OH) and four carbonyl groups (−CO) was added to MAPbI3 perovskite precursor to regulate the crystallization process by slowing the crystallization rate, thereby expanding the crystal size and preparing perovskite films with low defect density. In addition, UA anchors the uncoordinated Pb2+ and suppresses the migration of I-ions, which enhances the stability of the perovskite film. Consequently, an impressive PCE exceeding 20% was achieved for inverted structure MAPbI3-based PSCs. More impressively, the optimized PSCs maintained 78% of the initial PCE under air with high humidity (RH ≈ 65%, 25–30 °C) for 1000 h. UA can be extracted from the plant, usnea, making it inexpensive and easy to obtain. Our work demonstrates the application of the plant material in PSCs and their industrialization, which is significant nowadays.</description><subject>air</subject><subject>biocompatible materials</subject><subject>crystallization</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>humidity</subject><subject>industrialization</subject><subject>usnic acid</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkUtPwzAQhC0EolC4ckQ-IqQWPxP3COUVqYhKwDmyE6d1SeJiu5X673FJ6Q1xsrX-Zta7A8AFRkOMCL6RhZeNGbICJUTwA3CCR4wNBOHkcH9nrAdOvV8glFCC-DHoUSEYYYKcgOWdsY0M2hlZw6xZOrvWHoa5hm9BKlObsIG2glMdH_ynCbFua-ngWNe1h2oDp9J7s5bBtDN4rytdBA9lW8KsnRtlfsqZbeGLmbkI2fYMHFWy9vp8d_bBx-PD-_h5MHl9ysa3k4GkWIRBSROFKp2M0rJMSKUE1ohRpXjKyoJyxBWnFZIpRSQK2GiUMJwSRdNKKoEUpn1w1fnGkb5W2oe8Mb6Iv5attiufU8xpggVL2f8oSjhJt00jOuzQwlnvna7ypTONdJsco3wbSN4Fku8CiYLLnfdKNbrc478JROC6A6IwX9iVa-NW_nL7Bpntlbk</recordid><startdate>20240619</startdate><enddate>20240619</enddate><creator>Liu, Zuwang</creator><creator>Su, Zhan</creator><creator>Yu, Bo</creator><creator>Sun, Yapeng</creator><creator>Zhang, Jiankai</creator><creator>Yu, Huangzhong</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-6382-4256</orcidid><orcidid>https://orcid.org/0000-0002-0923-2321</orcidid></search><sort><creationdate>20240619</creationdate><title>Biomaterial Improves the Stability of Perovskite Solar Cells by Passivating Defects and Inhibiting Ion Migration</title><author>Liu, Zuwang ; Su, Zhan ; Yu, Bo ; Sun, Yapeng ; Zhang, Jiankai ; Yu, Huangzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a318t-d36b0fe697dd62fb81e043bb574dc3505b53f0a7302a3149964172b37fab80b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>air</topic><topic>biocompatible materials</topic><topic>crystallization</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>humidity</topic><topic>industrialization</topic><topic>usnic acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zuwang</creatorcontrib><creatorcontrib>Su, Zhan</creatorcontrib><creatorcontrib>Yu, Bo</creatorcontrib><creatorcontrib>Sun, Yapeng</creatorcontrib><creatorcontrib>Zhang, Jiankai</creatorcontrib><creatorcontrib>Yu, Huangzhong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zuwang</au><au>Su, Zhan</au><au>Yu, Bo</au><au>Sun, Yapeng</au><au>Zhang, Jiankai</au><au>Yu, Huangzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomaterial Improves the Stability of Perovskite Solar Cells by Passivating Defects and Inhibiting Ion Migration</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-06-19</date><risdate>2024</risdate><volume>16</volume><issue>24</issue><spage>31218</spage><epage>31227</epage><pages>31218-31227</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>With the rapid improvement of power conversion efficiency (PCE), perovskite solar cells (PSCs) have broad application prospects and their industrialization will be the next step. Nevertheless, the performance and long-term stability of the devices are limited by the defect-induced nonradiative recombination centers and ions’ migration inside the perovskite films. Here, usnic acid (UA), an easy-to-obtain and efficient natural biomaterial with a hydroxyl functional group (−OH) and four carbonyl groups (−CO) was added to MAPbI3 perovskite precursor to regulate the crystallization process by slowing the crystallization rate, thereby expanding the crystal size and preparing perovskite films with low defect density. In addition, UA anchors the uncoordinated Pb2+ and suppresses the migration of I-ions, which enhances the stability of the perovskite film. Consequently, an impressive PCE exceeding 20% was achieved for inverted structure MAPbI3-based PSCs. More impressively, the optimized PSCs maintained 78% of the initial PCE under air with high humidity (RH ≈ 65%, 25–30 °C) for 1000 h. UA can be extracted from the plant, usnea, making it inexpensive and easy to obtain. Our work demonstrates the application of the plant material in PSCs and their industrialization, which is significant nowadays.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38842482</pmid><doi>10.1021/acsami.4c06285</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6382-4256</orcidid><orcidid>https://orcid.org/0000-0002-0923-2321</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-06, Vol.16 (24), p.31218-31227
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3153618474
source American Chemical Society Journals
subjects air
biocompatible materials
crystallization
Energy, Environmental, and Catalysis Applications
humidity
industrialization
usnic acid
title Biomaterial Improves the Stability of Perovskite Solar Cells by Passivating Defects and Inhibiting Ion Migration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomaterial%20Improves%20the%20Stability%20of%20Perovskite%20Solar%20Cells%20by%20Passivating%20Defects%20and%20Inhibiting%20Ion%20Migration&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Liu,%20Zuwang&rft.date=2024-06-19&rft.volume=16&rft.issue=24&rft.spage=31218&rft.epage=31227&rft.pages=31218-31227&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c06285&rft_dat=%3Cproquest_cross%3E3065273505%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065273505&rft_id=info:pmid/38842482&rfr_iscdi=true