Electrochemical platform for detecting Escherichia coli bacteria using machine learning methods

We present an electrochemical platform designed to reduce time of Escherichia coli bacteria detection from 24 to 48-h to 30 min. The presented approach is based on a system which includes gallium-indium (eGaIn) alloy to provide conductivity and a hydrogel system to preserve bacteria and their metabo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2024-09, Vol.259, p.116377, Article 116377
Hauptverfasser: Aliev, Timur A., Lavrentev, Filipp V., Dyakonov, Alexandr V., Diveev, Daniil A., Shilovskikh, Vladimir V., Skorb, Ekaterina V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 116377
container_title Biosensors & bioelectronics
container_volume 259
creator Aliev, Timur A.
Lavrentev, Filipp V.
Dyakonov, Alexandr V.
Diveev, Daniil A.
Shilovskikh, Vladimir V.
Skorb, Ekaterina V.
description We present an electrochemical platform designed to reduce time of Escherichia coli bacteria detection from 24 to 48-h to 30 min. The presented approach is based on a system which includes gallium-indium (eGaIn) alloy to provide conductivity and a hydrogel system to preserve bacteria and their metabolic species during the analysis. The work is dedicated to accurate and fast detection of Escherichia coli bacteria in different environments with the supply of machine learning methods. Electrochemical data obtained during the analysis is processed via multilayer perceptron model to identify i.e. predict bacterial concentration in the samples. The performed approach provides the effectiveness of bacteria identification in the range of 102–109 colony forming units per ml with the average accuracy of 97%. The proposed bioelectrochemical system combined with machine learning model is prospective for food analysis, agriculture, biomedicine. •A combined approach with two-electrode cell based on eGaIn and hydrogel was proposed for quantitate determination of CFU Escherichia coli within its preservation during the analysis.•A neural network has been trained and tested to determine the number of CFU Escherichia coli based on cyclic voltammograms.•The proposed analysis is performed by a specially designed electrochemical platform.
doi_str_mv 10.1016/j.bios.2024.116377
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153618142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566324003828</els_id><sourcerecordid>3153618142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-4cfdb9bd127c3a7ac03f178350f2f651e3dd4c8de4cc9bdefb765ec84a21ca993</originalsourceid><addsrcrecordid>eNqFkTtPxDAQhC0EguPxByhQSpocdhzbiUSD0PGQTqKB2nLWG86nJD7sHBL_HocDSmh2pZ1vp5gh5JzROaNMXq3njfNxXtCinDMmuVJ7ZMYqxfOy4GKfzGgtZC6k5EfkOMY1pVSxmh6SI14pJVVdzYhedAhj8LDC3oHpsk1nxtaHPksjszgm1Q2v2SImIjhYOZOB71zWGBjTwWTbOOm9SdKAWYcmDF8HHFfexlNy0Jou4tn3PiEvd4vn24d8-XT_eHuzzIGXdMxLaG1TN5YVCrhRBihvmaq4oG3RSsGQW1tCZbEESBi2jZICoSpNwcDUNT8hlzvfTfBvW4yj7l0E7DozoN9GzZngklUsJfMvSkVdiKoWE1rsUAg-xoCt3gTXm_ChGdVTB3qtpw701IHedZCeLr79t02P9vflJ_QEXO8ATIG8Oww6gsMB0LqQ4tbWu7_8PwH-Dpnx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059258952</pqid></control><display><type>article</type><title>Electrochemical platform for detecting Escherichia coli bacteria using machine learning methods</title><source>Elsevier ScienceDirect Journals</source><creator>Aliev, Timur A. ; Lavrentev, Filipp V. ; Dyakonov, Alexandr V. ; Diveev, Daniil A. ; Shilovskikh, Vladimir V. ; Skorb, Ekaterina V.</creator><creatorcontrib>Aliev, Timur A. ; Lavrentev, Filipp V. ; Dyakonov, Alexandr V. ; Diveev, Daniil A. ; Shilovskikh, Vladimir V. ; Skorb, Ekaterina V.</creatorcontrib><description>We present an electrochemical platform designed to reduce time of Escherichia coli bacteria detection from 24 to 48-h to 30 min. The presented approach is based on a system which includes gallium-indium (eGaIn) alloy to provide conductivity and a hydrogel system to preserve bacteria and their metabolic species during the analysis. The work is dedicated to accurate and fast detection of Escherichia coli bacteria in different environments with the supply of machine learning methods. Electrochemical data obtained during the analysis is processed via multilayer perceptron model to identify i.e. predict bacterial concentration in the samples. The performed approach provides the effectiveness of bacteria identification in the range of 102–109 colony forming units per ml with the average accuracy of 97%. The proposed bioelectrochemical system combined with machine learning model is prospective for food analysis, agriculture, biomedicine. •A combined approach with two-electrode cell based on eGaIn and hydrogel was proposed for quantitate determination of CFU Escherichia coli within its preservation during the analysis.•A neural network has been trained and tested to determine the number of CFU Escherichia coli based on cyclic voltammograms.•The proposed analysis is performed by a specially designed electrochemical platform.</description><identifier>ISSN: 0956-5663</identifier><identifier>ISSN: 1873-4235</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2024.116377</identifier><identifier>PMID: 38776798</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>alloys ; Bacteria ; bioelectrochemistry ; biosensors ; eGaIn ; Electrochemical platform ; Escherichia coli ; food analysis ; Hydrogels ; Machine learning ; medicine ; neural networks ; species</subject><ispartof>Biosensors &amp; bioelectronics, 2024-09, Vol.259, p.116377, Article 116377</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c340t-4cfdb9bd127c3a7ac03f178350f2f651e3dd4c8de4cc9bdefb765ec84a21ca993</cites><orcidid>0000-0003-3006-1325 ; 0009-0009-8627-2237 ; 0000-0003-0888-1693 ; 0000-0002-2878-7680 ; 0000-0003-2326-700X ; 0009-0006-7394-1006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bios.2024.116377$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38776798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aliev, Timur A.</creatorcontrib><creatorcontrib>Lavrentev, Filipp V.</creatorcontrib><creatorcontrib>Dyakonov, Alexandr V.</creatorcontrib><creatorcontrib>Diveev, Daniil A.</creatorcontrib><creatorcontrib>Shilovskikh, Vladimir V.</creatorcontrib><creatorcontrib>Skorb, Ekaterina V.</creatorcontrib><title>Electrochemical platform for detecting Escherichia coli bacteria using machine learning methods</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>We present an electrochemical platform designed to reduce time of Escherichia coli bacteria detection from 24 to 48-h to 30 min. The presented approach is based on a system which includes gallium-indium (eGaIn) alloy to provide conductivity and a hydrogel system to preserve bacteria and their metabolic species during the analysis. The work is dedicated to accurate and fast detection of Escherichia coli bacteria in different environments with the supply of machine learning methods. Electrochemical data obtained during the analysis is processed via multilayer perceptron model to identify i.e. predict bacterial concentration in the samples. The performed approach provides the effectiveness of bacteria identification in the range of 102–109 colony forming units per ml with the average accuracy of 97%. The proposed bioelectrochemical system combined with machine learning model is prospective for food analysis, agriculture, biomedicine. •A combined approach with two-electrode cell based on eGaIn and hydrogel was proposed for quantitate determination of CFU Escherichia coli within its preservation during the analysis.•A neural network has been trained and tested to determine the number of CFU Escherichia coli based on cyclic voltammograms.•The proposed analysis is performed by a specially designed electrochemical platform.</description><subject>alloys</subject><subject>Bacteria</subject><subject>bioelectrochemistry</subject><subject>biosensors</subject><subject>eGaIn</subject><subject>Electrochemical platform</subject><subject>Escherichia coli</subject><subject>food analysis</subject><subject>Hydrogels</subject><subject>Machine learning</subject><subject>medicine</subject><subject>neural networks</subject><subject>species</subject><issn>0956-5663</issn><issn>1873-4235</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkTtPxDAQhC0EguPxByhQSpocdhzbiUSD0PGQTqKB2nLWG86nJD7sHBL_HocDSmh2pZ1vp5gh5JzROaNMXq3njfNxXtCinDMmuVJ7ZMYqxfOy4GKfzGgtZC6k5EfkOMY1pVSxmh6SI14pJVVdzYhedAhj8LDC3oHpsk1nxtaHPksjszgm1Q2v2SImIjhYOZOB71zWGBjTwWTbOOm9SdKAWYcmDF8HHFfexlNy0Jou4tn3PiEvd4vn24d8-XT_eHuzzIGXdMxLaG1TN5YVCrhRBihvmaq4oG3RSsGQW1tCZbEESBi2jZICoSpNwcDUNT8hlzvfTfBvW4yj7l0E7DozoN9GzZngklUsJfMvSkVdiKoWE1rsUAg-xoCt3gTXm_ChGdVTB3qtpw701IHedZCeLr79t02P9vflJ_QEXO8ATIG8Oww6gsMB0LqQ4tbWu7_8PwH-Dpnx</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Aliev, Timur A.</creator><creator>Lavrentev, Filipp V.</creator><creator>Dyakonov, Alexandr V.</creator><creator>Diveev, Daniil A.</creator><creator>Shilovskikh, Vladimir V.</creator><creator>Skorb, Ekaterina V.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3006-1325</orcidid><orcidid>https://orcid.org/0009-0009-8627-2237</orcidid><orcidid>https://orcid.org/0000-0003-0888-1693</orcidid><orcidid>https://orcid.org/0000-0002-2878-7680</orcidid><orcidid>https://orcid.org/0000-0003-2326-700X</orcidid><orcidid>https://orcid.org/0009-0006-7394-1006</orcidid></search><sort><creationdate>20240901</creationdate><title>Electrochemical platform for detecting Escherichia coli bacteria using machine learning methods</title><author>Aliev, Timur A. ; Lavrentev, Filipp V. ; Dyakonov, Alexandr V. ; Diveev, Daniil A. ; Shilovskikh, Vladimir V. ; Skorb, Ekaterina V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-4cfdb9bd127c3a7ac03f178350f2f651e3dd4c8de4cc9bdefb765ec84a21ca993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>alloys</topic><topic>Bacteria</topic><topic>bioelectrochemistry</topic><topic>biosensors</topic><topic>eGaIn</topic><topic>Electrochemical platform</topic><topic>Escherichia coli</topic><topic>food analysis</topic><topic>Hydrogels</topic><topic>Machine learning</topic><topic>medicine</topic><topic>neural networks</topic><topic>species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aliev, Timur A.</creatorcontrib><creatorcontrib>Lavrentev, Filipp V.</creatorcontrib><creatorcontrib>Dyakonov, Alexandr V.</creatorcontrib><creatorcontrib>Diveev, Daniil A.</creatorcontrib><creatorcontrib>Shilovskikh, Vladimir V.</creatorcontrib><creatorcontrib>Skorb, Ekaterina V.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aliev, Timur A.</au><au>Lavrentev, Filipp V.</au><au>Dyakonov, Alexandr V.</au><au>Diveev, Daniil A.</au><au>Shilovskikh, Vladimir V.</au><au>Skorb, Ekaterina V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical platform for detecting Escherichia coli bacteria using machine learning methods</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>259</volume><spage>116377</spage><pages>116377-</pages><artnum>116377</artnum><issn>0956-5663</issn><issn>1873-4235</issn><eissn>1873-4235</eissn><abstract>We present an electrochemical platform designed to reduce time of Escherichia coli bacteria detection from 24 to 48-h to 30 min. The presented approach is based on a system which includes gallium-indium (eGaIn) alloy to provide conductivity and a hydrogel system to preserve bacteria and their metabolic species during the analysis. The work is dedicated to accurate and fast detection of Escherichia coli bacteria in different environments with the supply of machine learning methods. Electrochemical data obtained during the analysis is processed via multilayer perceptron model to identify i.e. predict bacterial concentration in the samples. The performed approach provides the effectiveness of bacteria identification in the range of 102–109 colony forming units per ml with the average accuracy of 97%. The proposed bioelectrochemical system combined with machine learning model is prospective for food analysis, agriculture, biomedicine. •A combined approach with two-electrode cell based on eGaIn and hydrogel was proposed for quantitate determination of CFU Escherichia coli within its preservation during the analysis.•A neural network has been trained and tested to determine the number of CFU Escherichia coli based on cyclic voltammograms.•The proposed analysis is performed by a specially designed electrochemical platform.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>38776798</pmid><doi>10.1016/j.bios.2024.116377</doi><orcidid>https://orcid.org/0000-0003-3006-1325</orcidid><orcidid>https://orcid.org/0009-0009-8627-2237</orcidid><orcidid>https://orcid.org/0000-0003-0888-1693</orcidid><orcidid>https://orcid.org/0000-0002-2878-7680</orcidid><orcidid>https://orcid.org/0000-0003-2326-700X</orcidid><orcidid>https://orcid.org/0009-0006-7394-1006</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2024-09, Vol.259, p.116377, Article 116377
issn 0956-5663
1873-4235
1873-4235
language eng
recordid cdi_proquest_miscellaneous_3153618142
source Elsevier ScienceDirect Journals
subjects alloys
Bacteria
bioelectrochemistry
biosensors
eGaIn
Electrochemical platform
Escherichia coli
food analysis
Hydrogels
Machine learning
medicine
neural networks
species
title Electrochemical platform for detecting Escherichia coli bacteria using machine learning methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A00%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20platform%20for%20detecting%20Escherichia%20coli%20bacteria%20using%20machine%20learning%20methods&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Aliev,%20Timur%20A.&rft.date=2024-09-01&rft.volume=259&rft.spage=116377&rft.pages=116377-&rft.artnum=116377&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2024.116377&rft_dat=%3Cproquest_cross%3E3153618142%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059258952&rft_id=info:pmid/38776798&rft_els_id=S0956566324003828&rfr_iscdi=true