Numerical Investigation of Funicular Liquid Bridges between Three Spherical Grains in a Bidisperse Particulate System

Appropriate capillary effects are beneficial for controlling the wet powder performance and agglomerate formation. As water content rises, the funicular regime supplants the pendular regime as the predominant state in wet granular media. The displacement of grains leading to the stretching of funicu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2024-06, Vol.40 (24), p.12744-12754
Hauptverfasser: Wang, Shaohan, Wang, Ji-Peng, Ge, Shangqi, Li, Xianwei, Dadda, Abdelali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12754
container_issue 24
container_start_page 12744
container_title Langmuir
container_volume 40
creator Wang, Shaohan
Wang, Ji-Peng
Ge, Shangqi
Li, Xianwei
Dadda, Abdelali
description Appropriate capillary effects are beneficial for controlling the wet powder performance and agglomerate formation. As water content rises, the funicular regime supplants the pendular regime as the predominant state in wet granular media. The displacement of grains leading to the stretching of funicular liquid bridges until rupture is an interesting and common phenomenon. Utilizing Surface Evolver software (an energy minimization approach), this work develops an efficient and accurate numerical model to describe liquid interactions among three spherical grains. The effects of liquid volume, contact angle, grain size ratio, grain-pair gap, and separation distance on the capillary forces and rupture distances are investigated. Notably, we present a modified closed-form equation for predicting the rupture distance of funicular bridges between three grains, which reflects the coupled effects of the contact angle, grain size, and liquid volume on rupture distance. This present study provides insights for incorporating capillary effects into mechanical models relying on microassembly composed of several grains in bidisperse particulate systems. Additionally, the numerical findings confirm some findings regarding the splitting of funicular bridges.
doi_str_mv 10.1021/acs.langmuir.4c01364
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153617611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065275113</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-3b5903c62d179676b63caef8398493ac0661c984147e795886fde64a3b5abbe63</originalsourceid><addsrcrecordid>eNqFkctOwzAQRS0EgvL4A4S8ZJNix47tLCmigFQBEmUdOc6kGOXR2jGof49LC0tYeRbn3pHnIHROyZiSlF5p48eN7hZtsG7MDaFM8D00ollKkkylch-NiOQskVywI3Ts_TshJGc8P0RHTCmmiCIjFB5DC84a3eCH7gP8YBd6sH2H-xpPQ2dNaLTDM7sKtsITZ6sFeFzC8AnQ4fmbA8Avy7ddw53TtvPYdljjia2sX4LzgJ-1G76Lhgiv_QDtKTqodePhbPeeoNfp7fzmPpk93T3cXM8SzRgZElZmOWFGpBWVuZCiFMxoqBXLFc-ZNkQIauJMuQSZZ0qJugLBdczpsgTBTtDltnfp-lWIvyta6w008W7QB18wmjFBpaD0f5SILJVZJCPKt6hxvfcO6mLpbKvduqCk2Lgpopvix02xcxNjF7sNoWyh-g39yIgA2QKb-HsfXBdv83fnF1WnnxI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065275113</pqid></control><display><type>article</type><title>Numerical Investigation of Funicular Liquid Bridges between Three Spherical Grains in a Bidisperse Particulate System</title><source>ACS Publications</source><creator>Wang, Shaohan ; Wang, Ji-Peng ; Ge, Shangqi ; Li, Xianwei ; Dadda, Abdelali</creator><creatorcontrib>Wang, Shaohan ; Wang, Ji-Peng ; Ge, Shangqi ; Li, Xianwei ; Dadda, Abdelali</creatorcontrib><description>Appropriate capillary effects are beneficial for controlling the wet powder performance and agglomerate formation. As water content rises, the funicular regime supplants the pendular regime as the predominant state in wet granular media. The displacement of grains leading to the stretching of funicular liquid bridges until rupture is an interesting and common phenomenon. Utilizing Surface Evolver software (an energy minimization approach), this work develops an efficient and accurate numerical model to describe liquid interactions among three spherical grains. The effects of liquid volume, contact angle, grain size ratio, grain-pair gap, and separation distance on the capillary forces and rupture distances are investigated. Notably, we present a modified closed-form equation for predicting the rupture distance of funicular bridges between three grains, which reflects the coupled effects of the contact angle, grain size, and liquid volume on rupture distance. This present study provides insights for incorporating capillary effects into mechanical models relying on microassembly composed of several grains in bidisperse particulate systems. Additionally, the numerical findings confirm some findings regarding the splitting of funicular bridges.</description><identifier>ISSN: 0743-7463</identifier><identifier>ISSN: 1520-5827</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.4c01364</identifier><identifier>PMID: 38838080</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>computer software ; contact angle ; energy ; equations ; liquids ; mathematical models ; water content</subject><ispartof>Langmuir, 2024-06, Vol.40 (24), p.12744-12754</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a330t-3b5903c62d179676b63caef8398493ac0661c984147e795886fde64a3b5abbe63</cites><orcidid>0000-0001-7082-8864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.4c01364$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.4c01364$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38838080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shaohan</creatorcontrib><creatorcontrib>Wang, Ji-Peng</creatorcontrib><creatorcontrib>Ge, Shangqi</creatorcontrib><creatorcontrib>Li, Xianwei</creatorcontrib><creatorcontrib>Dadda, Abdelali</creatorcontrib><title>Numerical Investigation of Funicular Liquid Bridges between Three Spherical Grains in a Bidisperse Particulate System</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Appropriate capillary effects are beneficial for controlling the wet powder performance and agglomerate formation. As water content rises, the funicular regime supplants the pendular regime as the predominant state in wet granular media. The displacement of grains leading to the stretching of funicular liquid bridges until rupture is an interesting and common phenomenon. Utilizing Surface Evolver software (an energy minimization approach), this work develops an efficient and accurate numerical model to describe liquid interactions among three spherical grains. The effects of liquid volume, contact angle, grain size ratio, grain-pair gap, and separation distance on the capillary forces and rupture distances are investigated. Notably, we present a modified closed-form equation for predicting the rupture distance of funicular bridges between three grains, which reflects the coupled effects of the contact angle, grain size, and liquid volume on rupture distance. This present study provides insights for incorporating capillary effects into mechanical models relying on microassembly composed of several grains in bidisperse particulate systems. Additionally, the numerical findings confirm some findings regarding the splitting of funicular bridges.</description><subject>computer software</subject><subject>contact angle</subject><subject>energy</subject><subject>equations</subject><subject>liquids</subject><subject>mathematical models</subject><subject>water content</subject><issn>0743-7463</issn><issn>1520-5827</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkctOwzAQRS0EgvL4A4S8ZJNix47tLCmigFQBEmUdOc6kGOXR2jGof49LC0tYeRbn3pHnIHROyZiSlF5p48eN7hZtsG7MDaFM8D00ollKkkylch-NiOQskVywI3Ts_TshJGc8P0RHTCmmiCIjFB5DC84a3eCH7gP8YBd6sH2H-xpPQ2dNaLTDM7sKtsITZ6sFeFzC8AnQ4fmbA8Avy7ddw53TtvPYdljjia2sX4LzgJ-1G76Lhgiv_QDtKTqodePhbPeeoNfp7fzmPpk93T3cXM8SzRgZElZmOWFGpBWVuZCiFMxoqBXLFc-ZNkQIauJMuQSZZ0qJugLBdczpsgTBTtDltnfp-lWIvyta6w008W7QB18wmjFBpaD0f5SILJVZJCPKt6hxvfcO6mLpbKvduqCk2Lgpopvix02xcxNjF7sNoWyh-g39yIgA2QKb-HsfXBdv83fnF1WnnxI</recordid><startdate>20240618</startdate><enddate>20240618</enddate><creator>Wang, Shaohan</creator><creator>Wang, Ji-Peng</creator><creator>Ge, Shangqi</creator><creator>Li, Xianwei</creator><creator>Dadda, Abdelali</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-7082-8864</orcidid></search><sort><creationdate>20240618</creationdate><title>Numerical Investigation of Funicular Liquid Bridges between Three Spherical Grains in a Bidisperse Particulate System</title><author>Wang, Shaohan ; Wang, Ji-Peng ; Ge, Shangqi ; Li, Xianwei ; Dadda, Abdelali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-3b5903c62d179676b63caef8398493ac0661c984147e795886fde64a3b5abbe63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>computer software</topic><topic>contact angle</topic><topic>energy</topic><topic>equations</topic><topic>liquids</topic><topic>mathematical models</topic><topic>water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shaohan</creatorcontrib><creatorcontrib>Wang, Ji-Peng</creatorcontrib><creatorcontrib>Ge, Shangqi</creatorcontrib><creatorcontrib>Li, Xianwei</creatorcontrib><creatorcontrib>Dadda, Abdelali</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shaohan</au><au>Wang, Ji-Peng</au><au>Ge, Shangqi</au><au>Li, Xianwei</au><au>Dadda, Abdelali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Investigation of Funicular Liquid Bridges between Three Spherical Grains in a Bidisperse Particulate System</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2024-06-18</date><risdate>2024</risdate><volume>40</volume><issue>24</issue><spage>12744</spage><epage>12754</epage><pages>12744-12754</pages><issn>0743-7463</issn><issn>1520-5827</issn><eissn>1520-5827</eissn><abstract>Appropriate capillary effects are beneficial for controlling the wet powder performance and agglomerate formation. As water content rises, the funicular regime supplants the pendular regime as the predominant state in wet granular media. The displacement of grains leading to the stretching of funicular liquid bridges until rupture is an interesting and common phenomenon. Utilizing Surface Evolver software (an energy minimization approach), this work develops an efficient and accurate numerical model to describe liquid interactions among three spherical grains. The effects of liquid volume, contact angle, grain size ratio, grain-pair gap, and separation distance on the capillary forces and rupture distances are investigated. Notably, we present a modified closed-form equation for predicting the rupture distance of funicular bridges between three grains, which reflects the coupled effects of the contact angle, grain size, and liquid volume on rupture distance. This present study provides insights for incorporating capillary effects into mechanical models relying on microassembly composed of several grains in bidisperse particulate systems. Additionally, the numerical findings confirm some findings regarding the splitting of funicular bridges.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38838080</pmid><doi>10.1021/acs.langmuir.4c01364</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7082-8864</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2024-06, Vol.40 (24), p.12744-12754
issn 0743-7463
1520-5827
1520-5827
language eng
recordid cdi_proquest_miscellaneous_3153617611
source ACS Publications
subjects computer software
contact angle
energy
equations
liquids
mathematical models
water content
title Numerical Investigation of Funicular Liquid Bridges between Three Spherical Grains in a Bidisperse Particulate System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A25%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Investigation%20of%20Funicular%20Liquid%20Bridges%20between%20Three%20Spherical%20Grains%20in%20a%20Bidisperse%20Particulate%20System&rft.jtitle=Langmuir&rft.au=Wang,%20Shaohan&rft.date=2024-06-18&rft.volume=40&rft.issue=24&rft.spage=12744&rft.epage=12754&rft.pages=12744-12754&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.4c01364&rft_dat=%3Cproquest_cross%3E3065275113%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065275113&rft_id=info:pmid/38838080&rfr_iscdi=true