Numerical Investigation of Funicular Liquid Bridges between Three Spherical Grains in a Bidisperse Particulate System
Appropriate capillary effects are beneficial for controlling the wet powder performance and agglomerate formation. As water content rises, the funicular regime supplants the pendular regime as the predominant state in wet granular media. The displacement of grains leading to the stretching of funicu...
Gespeichert in:
Veröffentlicht in: | Langmuir 2024-06, Vol.40 (24), p.12744-12754 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12754 |
---|---|
container_issue | 24 |
container_start_page | 12744 |
container_title | Langmuir |
container_volume | 40 |
creator | Wang, Shaohan Wang, Ji-Peng Ge, Shangqi Li, Xianwei Dadda, Abdelali |
description | Appropriate capillary effects are beneficial for controlling the wet powder performance and agglomerate formation. As water content rises, the funicular regime supplants the pendular regime as the predominant state in wet granular media. The displacement of grains leading to the stretching of funicular liquid bridges until rupture is an interesting and common phenomenon. Utilizing Surface Evolver software (an energy minimization approach), this work develops an efficient and accurate numerical model to describe liquid interactions among three spherical grains. The effects of liquid volume, contact angle, grain size ratio, grain-pair gap, and separation distance on the capillary forces and rupture distances are investigated. Notably, we present a modified closed-form equation for predicting the rupture distance of funicular bridges between three grains, which reflects the coupled effects of the contact angle, grain size, and liquid volume on rupture distance. This present study provides insights for incorporating capillary effects into mechanical models relying on microassembly composed of several grains in bidisperse particulate systems. Additionally, the numerical findings confirm some findings regarding the splitting of funicular bridges. |
doi_str_mv | 10.1021/acs.langmuir.4c01364 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153617611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065275113</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-3b5903c62d179676b63caef8398493ac0661c984147e795886fde64a3b5abbe63</originalsourceid><addsrcrecordid>eNqFkctOwzAQRS0EgvL4A4S8ZJNix47tLCmigFQBEmUdOc6kGOXR2jGof49LC0tYeRbn3pHnIHROyZiSlF5p48eN7hZtsG7MDaFM8D00ollKkkylch-NiOQskVywI3Ts_TshJGc8P0RHTCmmiCIjFB5DC84a3eCH7gP8YBd6sH2H-xpPQ2dNaLTDM7sKtsITZ6sFeFzC8AnQ4fmbA8Avy7ddw53TtvPYdljjia2sX4LzgJ-1G76Lhgiv_QDtKTqodePhbPeeoNfp7fzmPpk93T3cXM8SzRgZElZmOWFGpBWVuZCiFMxoqBXLFc-ZNkQIauJMuQSZZ0qJugLBdczpsgTBTtDltnfp-lWIvyta6w008W7QB18wmjFBpaD0f5SILJVZJCPKt6hxvfcO6mLpbKvduqCk2Lgpopvix02xcxNjF7sNoWyh-g39yIgA2QKb-HsfXBdv83fnF1WnnxI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065275113</pqid></control><display><type>article</type><title>Numerical Investigation of Funicular Liquid Bridges between Three Spherical Grains in a Bidisperse Particulate System</title><source>ACS Publications</source><creator>Wang, Shaohan ; Wang, Ji-Peng ; Ge, Shangqi ; Li, Xianwei ; Dadda, Abdelali</creator><creatorcontrib>Wang, Shaohan ; Wang, Ji-Peng ; Ge, Shangqi ; Li, Xianwei ; Dadda, Abdelali</creatorcontrib><description>Appropriate capillary effects are beneficial for controlling the wet powder performance and agglomerate formation. As water content rises, the funicular regime supplants the pendular regime as the predominant state in wet granular media. The displacement of grains leading to the stretching of funicular liquid bridges until rupture is an interesting and common phenomenon. Utilizing Surface Evolver software (an energy minimization approach), this work develops an efficient and accurate numerical model to describe liquid interactions among three spherical grains. The effects of liquid volume, contact angle, grain size ratio, grain-pair gap, and separation distance on the capillary forces and rupture distances are investigated. Notably, we present a modified closed-form equation for predicting the rupture distance of funicular bridges between three grains, which reflects the coupled effects of the contact angle, grain size, and liquid volume on rupture distance. This present study provides insights for incorporating capillary effects into mechanical models relying on microassembly composed of several grains in bidisperse particulate systems. Additionally, the numerical findings confirm some findings regarding the splitting of funicular bridges.</description><identifier>ISSN: 0743-7463</identifier><identifier>ISSN: 1520-5827</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.4c01364</identifier><identifier>PMID: 38838080</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>computer software ; contact angle ; energy ; equations ; liquids ; mathematical models ; water content</subject><ispartof>Langmuir, 2024-06, Vol.40 (24), p.12744-12754</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a330t-3b5903c62d179676b63caef8398493ac0661c984147e795886fde64a3b5abbe63</cites><orcidid>0000-0001-7082-8864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.4c01364$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.4c01364$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38838080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shaohan</creatorcontrib><creatorcontrib>Wang, Ji-Peng</creatorcontrib><creatorcontrib>Ge, Shangqi</creatorcontrib><creatorcontrib>Li, Xianwei</creatorcontrib><creatorcontrib>Dadda, Abdelali</creatorcontrib><title>Numerical Investigation of Funicular Liquid Bridges between Three Spherical Grains in a Bidisperse Particulate System</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Appropriate capillary effects are beneficial for controlling the wet powder performance and agglomerate formation. As water content rises, the funicular regime supplants the pendular regime as the predominant state in wet granular media. The displacement of grains leading to the stretching of funicular liquid bridges until rupture is an interesting and common phenomenon. Utilizing Surface Evolver software (an energy minimization approach), this work develops an efficient and accurate numerical model to describe liquid interactions among three spherical grains. The effects of liquid volume, contact angle, grain size ratio, grain-pair gap, and separation distance on the capillary forces and rupture distances are investigated. Notably, we present a modified closed-form equation for predicting the rupture distance of funicular bridges between three grains, which reflects the coupled effects of the contact angle, grain size, and liquid volume on rupture distance. This present study provides insights for incorporating capillary effects into mechanical models relying on microassembly composed of several grains in bidisperse particulate systems. Additionally, the numerical findings confirm some findings regarding the splitting of funicular bridges.</description><subject>computer software</subject><subject>contact angle</subject><subject>energy</subject><subject>equations</subject><subject>liquids</subject><subject>mathematical models</subject><subject>water content</subject><issn>0743-7463</issn><issn>1520-5827</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkctOwzAQRS0EgvL4A4S8ZJNix47tLCmigFQBEmUdOc6kGOXR2jGof49LC0tYeRbn3pHnIHROyZiSlF5p48eN7hZtsG7MDaFM8D00ollKkkylch-NiOQskVywI3Ts_TshJGc8P0RHTCmmiCIjFB5DC84a3eCH7gP8YBd6sH2H-xpPQ2dNaLTDM7sKtsITZ6sFeFzC8AnQ4fmbA8Avy7ddw53TtvPYdljjia2sX4LzgJ-1G76Lhgiv_QDtKTqodePhbPeeoNfp7fzmPpk93T3cXM8SzRgZElZmOWFGpBWVuZCiFMxoqBXLFc-ZNkQIauJMuQSZZ0qJugLBdczpsgTBTtDltnfp-lWIvyta6w008W7QB18wmjFBpaD0f5SILJVZJCPKt6hxvfcO6mLpbKvduqCk2Lgpopvix02xcxNjF7sNoWyh-g39yIgA2QKb-HsfXBdv83fnF1WnnxI</recordid><startdate>20240618</startdate><enddate>20240618</enddate><creator>Wang, Shaohan</creator><creator>Wang, Ji-Peng</creator><creator>Ge, Shangqi</creator><creator>Li, Xianwei</creator><creator>Dadda, Abdelali</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-7082-8864</orcidid></search><sort><creationdate>20240618</creationdate><title>Numerical Investigation of Funicular Liquid Bridges between Three Spherical Grains in a Bidisperse Particulate System</title><author>Wang, Shaohan ; Wang, Ji-Peng ; Ge, Shangqi ; Li, Xianwei ; Dadda, Abdelali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-3b5903c62d179676b63caef8398493ac0661c984147e795886fde64a3b5abbe63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>computer software</topic><topic>contact angle</topic><topic>energy</topic><topic>equations</topic><topic>liquids</topic><topic>mathematical models</topic><topic>water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shaohan</creatorcontrib><creatorcontrib>Wang, Ji-Peng</creatorcontrib><creatorcontrib>Ge, Shangqi</creatorcontrib><creatorcontrib>Li, Xianwei</creatorcontrib><creatorcontrib>Dadda, Abdelali</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shaohan</au><au>Wang, Ji-Peng</au><au>Ge, Shangqi</au><au>Li, Xianwei</au><au>Dadda, Abdelali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Investigation of Funicular Liquid Bridges between Three Spherical Grains in a Bidisperse Particulate System</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2024-06-18</date><risdate>2024</risdate><volume>40</volume><issue>24</issue><spage>12744</spage><epage>12754</epage><pages>12744-12754</pages><issn>0743-7463</issn><issn>1520-5827</issn><eissn>1520-5827</eissn><abstract>Appropriate capillary effects are beneficial for controlling the wet powder performance and agglomerate formation. As water content rises, the funicular regime supplants the pendular regime as the predominant state in wet granular media. The displacement of grains leading to the stretching of funicular liquid bridges until rupture is an interesting and common phenomenon. Utilizing Surface Evolver software (an energy minimization approach), this work develops an efficient and accurate numerical model to describe liquid interactions among three spherical grains. The effects of liquid volume, contact angle, grain size ratio, grain-pair gap, and separation distance on the capillary forces and rupture distances are investigated. Notably, we present a modified closed-form equation for predicting the rupture distance of funicular bridges between three grains, which reflects the coupled effects of the contact angle, grain size, and liquid volume on rupture distance. This present study provides insights for incorporating capillary effects into mechanical models relying on microassembly composed of several grains in bidisperse particulate systems. Additionally, the numerical findings confirm some findings regarding the splitting of funicular bridges.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38838080</pmid><doi>10.1021/acs.langmuir.4c01364</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7082-8864</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2024-06, Vol.40 (24), p.12744-12754 |
issn | 0743-7463 1520-5827 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153617611 |
source | ACS Publications |
subjects | computer software contact angle energy equations liquids mathematical models water content |
title | Numerical Investigation of Funicular Liquid Bridges between Three Spherical Grains in a Bidisperse Particulate System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A25%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Investigation%20of%20Funicular%20Liquid%20Bridges%20between%20Three%20Spherical%20Grains%20in%20a%20Bidisperse%20Particulate%20System&rft.jtitle=Langmuir&rft.au=Wang,%20Shaohan&rft.date=2024-06-18&rft.volume=40&rft.issue=24&rft.spage=12744&rft.epage=12754&rft.pages=12744-12754&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.4c01364&rft_dat=%3Cproquest_cross%3E3065275113%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065275113&rft_id=info:pmid/38838080&rfr_iscdi=true |