Enhanced hydrogen storage of alkaline earth metal-decorated Bn (n = 3–14) nanoclusters: a DFT study

Context Boron-based nanostructures hold significant promise for revolutionizing hydrogen storage technologies due to their exceptional properties and potential in efficiently accommodating and interacting with hydrogen molecules. In this paper, boron-based B n ( n = 3–14) nanoclusters decorated with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular modeling 2024-02, Vol.30 (2), p.55-55, Article 55
Hauptverfasser: Duraisamy, Parimala devi, S, Prince Makarios Paul, Gopalan, Praveena, Angamuthu, Abiram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue 2
container_start_page 55
container_title Journal of molecular modeling
container_volume 30
creator Duraisamy, Parimala devi
S, Prince Makarios Paul
Gopalan, Praveena
Angamuthu, Abiram
description Context Boron-based nanostructures hold significant promise for revolutionizing hydrogen storage technologies due to their exceptional properties and potential in efficiently accommodating and interacting with hydrogen molecules. In this paper, boron-based B n ( n = 3–14) nanoclusters decorated with alkaline earth metals (AEM = Ca and Be) were investigated for hydrogen storage applications based on density function theory (DFT) calculations. To evaluate H 2 adsorption capability, the adsorption energies, frontier molecular orbitals (FMOs), natural bond orbital (NBO), and quantum theory of atoms in molecule (QTAIM) analysis are performed. The primary aim of this research work is to achieve targeted value of 5.5 wt% set by the US Department of Energy (DOE) for the year 2025. The results revealed that B 5 Ca 2 , B 6 Ca 2 , and B 10 Ca 2 structures have the ability to hold up to 12H 2 molecules with gravimetric capacities of 15.20, 14.21, and 8.60 wt%, respectively, when compared to other boron structures decorated with calcium. Similarly, for Be-decorated structure, B 3 Be 2 structure can accommodate 3H 2 molecules with gravimetric capacity of 10.59 wt%. The result of this study indicates that AEM-decorated B n nanoclusters hold great promise as potential materials for hydrogen storage. Methods Density functional theory (DFT) approach at ωB97XD/6-311++G(d,p) level of theory is employed to investigate the possibility of storing H 2 molecules on alkaline earth metal (AEM = Ca and Be)-decorated B n ( n = 3–14) nanoclusters. All DFT computations were performed using Gaussian 09 software. To calculate frontier molecular orbitals (FMOs) and quantum theory of atoms in molecule (QTAIM) analysis, we have used GaussView and Multiwfn software, respectively.
doi_str_mv 10.1007/s00894-024-05847-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153616781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153616781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-a46e611f375432f8ff1f0ce3fc77c10577c7146bd45e0ef932659fc99ca9f6643</originalsourceid><addsrcrecordid>eNqFkbtOHDEUhq0IpKyAF0hlKQ0pJhxfZxyJAjYsICHRkNpyPMd7yawH7BmJ7XgH3jBPEi-LhJQCCh833_8dHf2EfGHwnQHUJxmgMbICXp5qZF09fiITMLKpFHCxRyZMM6i4kfCZHOW8AgDGlVacTwhexIWLHlu62LSpn2OkeeiTmyPtA3XdH9ctI1J0aVjQNQ6uq1r0BRhK5DzS40hPqfj79MzkNxpd7H035gFT_kEd_Tm7K7ax3RyS_eC6jEev_wH5Nbu4m15VN7eX19Ozm8oLoYfKSY2asSBqJQUPTQgsgEcRfF17BqrMmkn9u5UKAYMRXCsTvDHemaC1FAfkeOe9T_3DiHmw62X22HUuYj9mK5gSmum6YR-i3PCyUCgjCvr1P3TVjymWQ14ozozSWyHfUT71OScM9j4t1y5tLAO77cnuerKlJ_vSk30sIbEL5QLHOaY39Tupf30alCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920219561</pqid></control><display><type>article</type><title>Enhanced hydrogen storage of alkaline earth metal-decorated Bn (n = 3–14) nanoclusters: a DFT study</title><source>Springer Nature - Complete Springer Journals</source><creator>Duraisamy, Parimala devi ; S, Prince Makarios Paul ; Gopalan, Praveena ; Angamuthu, Abiram</creator><creatorcontrib>Duraisamy, Parimala devi ; S, Prince Makarios Paul ; Gopalan, Praveena ; Angamuthu, Abiram</creatorcontrib><description>Context Boron-based nanostructures hold significant promise for revolutionizing hydrogen storage technologies due to their exceptional properties and potential in efficiently accommodating and interacting with hydrogen molecules. In this paper, boron-based B n ( n = 3–14) nanoclusters decorated with alkaline earth metals (AEM = Ca and Be) were investigated for hydrogen storage applications based on density function theory (DFT) calculations. To evaluate H 2 adsorption capability, the adsorption energies, frontier molecular orbitals (FMOs), natural bond orbital (NBO), and quantum theory of atoms in molecule (QTAIM) analysis are performed. The primary aim of this research work is to achieve targeted value of 5.5 wt% set by the US Department of Energy (DOE) for the year 2025. The results revealed that B 5 Ca 2 , B 6 Ca 2 , and B 10 Ca 2 structures have the ability to hold up to 12H 2 molecules with gravimetric capacities of 15.20, 14.21, and 8.60 wt%, respectively, when compared to other boron structures decorated with calcium. Similarly, for Be-decorated structure, B 3 Be 2 structure can accommodate 3H 2 molecules with gravimetric capacity of 10.59 wt%. The result of this study indicates that AEM-decorated B n nanoclusters hold great promise as potential materials for hydrogen storage. Methods Density functional theory (DFT) approach at ωB97XD/6-311++G(d,p) level of theory is employed to investigate the possibility of storing H 2 molecules on alkaline earth metal (AEM = Ca and Be)-decorated B n ( n = 3–14) nanoclusters. All DFT computations were performed using Gaussian 09 software. To calculate frontier molecular orbitals (FMOs) and quantum theory of atoms in molecule (QTAIM) analysis, we have used GaussView and Multiwfn software, respectively.</description><identifier>ISSN: 1610-2940</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-024-05847-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adsorption ; Alkaline earth metals ; Beryllium ; Boron ; Calcium ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; computer software ; Decoration ; Density functional theory ; Earth ; Hydrogen ; Hydrogen storage ; Mathematical analysis ; Molecular Medicine ; Molecular orbitals ; Molecular structure ; Nanoclusters ; nanoparticles ; Original Paper ; quantum mechanics ; Quantum theory ; Software ; Theoretical and Computational Chemistry</subject><ispartof>Journal of molecular modeling, 2024-02, Vol.30 (2), p.55-55, Article 55</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c336t-a46e611f375432f8ff1f0ce3fc77c10577c7146bd45e0ef932659fc99ca9f6643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00894-024-05847-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00894-024-05847-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Duraisamy, Parimala devi</creatorcontrib><creatorcontrib>S, Prince Makarios Paul</creatorcontrib><creatorcontrib>Gopalan, Praveena</creatorcontrib><creatorcontrib>Angamuthu, Abiram</creatorcontrib><title>Enhanced hydrogen storage of alkaline earth metal-decorated Bn (n = 3–14) nanoclusters: a DFT study</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><description>Context Boron-based nanostructures hold significant promise for revolutionizing hydrogen storage technologies due to their exceptional properties and potential in efficiently accommodating and interacting with hydrogen molecules. In this paper, boron-based B n ( n = 3–14) nanoclusters decorated with alkaline earth metals (AEM = Ca and Be) were investigated for hydrogen storage applications based on density function theory (DFT) calculations. To evaluate H 2 adsorption capability, the adsorption energies, frontier molecular orbitals (FMOs), natural bond orbital (NBO), and quantum theory of atoms in molecule (QTAIM) analysis are performed. The primary aim of this research work is to achieve targeted value of 5.5 wt% set by the US Department of Energy (DOE) for the year 2025. The results revealed that B 5 Ca 2 , B 6 Ca 2 , and B 10 Ca 2 structures have the ability to hold up to 12H 2 molecules with gravimetric capacities of 15.20, 14.21, and 8.60 wt%, respectively, when compared to other boron structures decorated with calcium. Similarly, for Be-decorated structure, B 3 Be 2 structure can accommodate 3H 2 molecules with gravimetric capacity of 10.59 wt%. The result of this study indicates that AEM-decorated B n nanoclusters hold great promise as potential materials for hydrogen storage. Methods Density functional theory (DFT) approach at ωB97XD/6-311++G(d,p) level of theory is employed to investigate the possibility of storing H 2 molecules on alkaline earth metal (AEM = Ca and Be)-decorated B n ( n = 3–14) nanoclusters. All DFT computations were performed using Gaussian 09 software. To calculate frontier molecular orbitals (FMOs) and quantum theory of atoms in molecule (QTAIM) analysis, we have used GaussView and Multiwfn software, respectively.</description><subject>Adsorption</subject><subject>Alkaline earth metals</subject><subject>Beryllium</subject><subject>Boron</subject><subject>Calcium</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>computer software</subject><subject>Decoration</subject><subject>Density functional theory</subject><subject>Earth</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Mathematical analysis</subject><subject>Molecular Medicine</subject><subject>Molecular orbitals</subject><subject>Molecular structure</subject><subject>Nanoclusters</subject><subject>nanoparticles</subject><subject>Original Paper</subject><subject>quantum mechanics</subject><subject>Quantum theory</subject><subject>Software</subject><subject>Theoretical and Computational Chemistry</subject><issn>1610-2940</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkbtOHDEUhq0IpKyAF0hlKQ0pJhxfZxyJAjYsICHRkNpyPMd7yawH7BmJ7XgH3jBPEi-LhJQCCh833_8dHf2EfGHwnQHUJxmgMbICXp5qZF09fiITMLKpFHCxRyZMM6i4kfCZHOW8AgDGlVacTwhexIWLHlu62LSpn2OkeeiTmyPtA3XdH9ctI1J0aVjQNQ6uq1r0BRhK5DzS40hPqfj79MzkNxpd7H035gFT_kEd_Tm7K7ax3RyS_eC6jEev_wH5Nbu4m15VN7eX19Ozm8oLoYfKSY2asSBqJQUPTQgsgEcRfF17BqrMmkn9u5UKAYMRXCsTvDHemaC1FAfkeOe9T_3DiHmw62X22HUuYj9mK5gSmum6YR-i3PCyUCgjCvr1P3TVjymWQ14ozozSWyHfUT71OScM9j4t1y5tLAO77cnuerKlJ_vSk30sIbEL5QLHOaY39Tupf30alCs</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Duraisamy, Parimala devi</creator><creator>S, Prince Makarios Paul</creator><creator>Gopalan, Praveena</creator><creator>Angamuthu, Abiram</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240201</creationdate><title>Enhanced hydrogen storage of alkaline earth metal-decorated Bn (n = 3–14) nanoclusters: a DFT study</title><author>Duraisamy, Parimala devi ; S, Prince Makarios Paul ; Gopalan, Praveena ; Angamuthu, Abiram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-a46e611f375432f8ff1f0ce3fc77c10577c7146bd45e0ef932659fc99ca9f6643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Alkaline earth metals</topic><topic>Beryllium</topic><topic>Boron</topic><topic>Calcium</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>computer software</topic><topic>Decoration</topic><topic>Density functional theory</topic><topic>Earth</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Mathematical analysis</topic><topic>Molecular Medicine</topic><topic>Molecular orbitals</topic><topic>Molecular structure</topic><topic>Nanoclusters</topic><topic>nanoparticles</topic><topic>Original Paper</topic><topic>quantum mechanics</topic><topic>Quantum theory</topic><topic>Software</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duraisamy, Parimala devi</creatorcontrib><creatorcontrib>S, Prince Makarios Paul</creatorcontrib><creatorcontrib>Gopalan, Praveena</creatorcontrib><creatorcontrib>Angamuthu, Abiram</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duraisamy, Parimala devi</au><au>S, Prince Makarios Paul</au><au>Gopalan, Praveena</au><au>Angamuthu, Abiram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced hydrogen storage of alkaline earth metal-decorated Bn (n = 3–14) nanoclusters: a DFT study</atitle><jtitle>Journal of molecular modeling</jtitle><stitle>J Mol Model</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>30</volume><issue>2</issue><spage>55</spage><epage>55</epage><pages>55-55</pages><artnum>55</artnum><issn>1610-2940</issn><eissn>0948-5023</eissn><abstract>Context Boron-based nanostructures hold significant promise for revolutionizing hydrogen storage technologies due to their exceptional properties and potential in efficiently accommodating and interacting with hydrogen molecules. In this paper, boron-based B n ( n = 3–14) nanoclusters decorated with alkaline earth metals (AEM = Ca and Be) were investigated for hydrogen storage applications based on density function theory (DFT) calculations. To evaluate H 2 adsorption capability, the adsorption energies, frontier molecular orbitals (FMOs), natural bond orbital (NBO), and quantum theory of atoms in molecule (QTAIM) analysis are performed. The primary aim of this research work is to achieve targeted value of 5.5 wt% set by the US Department of Energy (DOE) for the year 2025. The results revealed that B 5 Ca 2 , B 6 Ca 2 , and B 10 Ca 2 structures have the ability to hold up to 12H 2 molecules with gravimetric capacities of 15.20, 14.21, and 8.60 wt%, respectively, when compared to other boron structures decorated with calcium. Similarly, for Be-decorated structure, B 3 Be 2 structure can accommodate 3H 2 molecules with gravimetric capacity of 10.59 wt%. The result of this study indicates that AEM-decorated B n nanoclusters hold great promise as potential materials for hydrogen storage. Methods Density functional theory (DFT) approach at ωB97XD/6-311++G(d,p) level of theory is employed to investigate the possibility of storing H 2 molecules on alkaline earth metal (AEM = Ca and Be)-decorated B n ( n = 3–14) nanoclusters. All DFT computations were performed using Gaussian 09 software. To calculate frontier molecular orbitals (FMOs) and quantum theory of atoms in molecule (QTAIM) analysis, we have used GaussView and Multiwfn software, respectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00894-024-05847-x</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1610-2940
ispartof Journal of molecular modeling, 2024-02, Vol.30 (2), p.55-55, Article 55
issn 1610-2940
0948-5023
language eng
recordid cdi_proquest_miscellaneous_3153616781
source Springer Nature - Complete Springer Journals
subjects Adsorption
Alkaline earth metals
Beryllium
Boron
Calcium
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Computer Appl. in Life Sciences
Computer Applications in Chemistry
computer software
Decoration
Density functional theory
Earth
Hydrogen
Hydrogen storage
Mathematical analysis
Molecular Medicine
Molecular orbitals
Molecular structure
Nanoclusters
nanoparticles
Original Paper
quantum mechanics
Quantum theory
Software
Theoretical and Computational Chemistry
title Enhanced hydrogen storage of alkaline earth metal-decorated Bn (n = 3–14) nanoclusters: a DFT study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A55%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20hydrogen%20storage%20of%20alkaline%20earth%20metal-decorated%20Bn%20(n%20=%203%E2%80%9314)%20nanoclusters:%20a%20DFT%20study&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=Duraisamy,%20Parimala%20devi&rft.date=2024-02-01&rft.volume=30&rft.issue=2&rft.spage=55&rft.epage=55&rft.pages=55-55&rft.artnum=55&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-024-05847-x&rft_dat=%3Cproquest_cross%3E3153616781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920219561&rft_id=info:pmid/&rfr_iscdi=true