Enhanced hydrogen storage of alkaline earth metal-decorated Bn (n = 3–14) nanoclusters: a DFT study
Context Boron-based nanostructures hold significant promise for revolutionizing hydrogen storage technologies due to their exceptional properties and potential in efficiently accommodating and interacting with hydrogen molecules. In this paper, boron-based B n ( n = 3–14) nanoclusters decorated with...
Gespeichert in:
Veröffentlicht in: | Journal of molecular modeling 2024-02, Vol.30 (2), p.55-55, Article 55 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | 2 |
container_start_page | 55 |
container_title | Journal of molecular modeling |
container_volume | 30 |
creator | Duraisamy, Parimala devi S, Prince Makarios Paul Gopalan, Praveena Angamuthu, Abiram |
description | Context
Boron-based nanostructures hold significant promise for revolutionizing hydrogen storage technologies due to their exceptional properties and potential in efficiently accommodating and interacting with hydrogen molecules. In this paper, boron-based B
n
(
n
= 3–14) nanoclusters decorated with alkaline earth metals (AEM = Ca and Be) were investigated for hydrogen storage applications based on density function theory (DFT) calculations. To evaluate H
2
adsorption capability, the adsorption energies, frontier molecular orbitals (FMOs), natural bond orbital (NBO), and quantum theory of atoms in molecule (QTAIM) analysis are performed. The primary aim of this research work is to achieve targeted value of 5.5 wt% set by the US Department of Energy (DOE) for the year 2025. The results revealed that B
5
Ca
2
, B
6
Ca
2
, and B
10
Ca
2
structures have the ability to hold up to 12H
2
molecules with gravimetric capacities of 15.20, 14.21, and 8.60 wt%, respectively, when compared to other boron structures decorated with calcium. Similarly, for Be-decorated structure, B
3
Be
2
structure can accommodate 3H
2
molecules with gravimetric capacity of 10.59 wt%. The result of this study indicates that AEM-decorated B
n
nanoclusters hold great promise as potential materials for hydrogen storage.
Methods
Density functional theory (DFT) approach at ωB97XD/6-311++G(d,p) level of theory is employed to investigate the possibility of storing H
2
molecules on alkaline earth metal (AEM = Ca and Be)-decorated B
n
(
n
= 3–14) nanoclusters. All DFT computations were performed using Gaussian 09 software. To calculate frontier molecular orbitals (FMOs) and quantum theory of atoms in molecule (QTAIM) analysis, we have used GaussView and Multiwfn software, respectively. |
doi_str_mv | 10.1007/s00894-024-05847-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153616781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153616781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-a46e611f375432f8ff1f0ce3fc77c10577c7146bd45e0ef932659fc99ca9f6643</originalsourceid><addsrcrecordid>eNqFkbtOHDEUhq0IpKyAF0hlKQ0pJhxfZxyJAjYsICHRkNpyPMd7yawH7BmJ7XgH3jBPEi-LhJQCCh833_8dHf2EfGHwnQHUJxmgMbICXp5qZF09fiITMLKpFHCxRyZMM6i4kfCZHOW8AgDGlVacTwhexIWLHlu62LSpn2OkeeiTmyPtA3XdH9ctI1J0aVjQNQ6uq1r0BRhK5DzS40hPqfj79MzkNxpd7H035gFT_kEd_Tm7K7ax3RyS_eC6jEev_wH5Nbu4m15VN7eX19Ozm8oLoYfKSY2asSBqJQUPTQgsgEcRfF17BqrMmkn9u5UKAYMRXCsTvDHemaC1FAfkeOe9T_3DiHmw62X22HUuYj9mK5gSmum6YR-i3PCyUCgjCvr1P3TVjymWQ14ozozSWyHfUT71OScM9j4t1y5tLAO77cnuerKlJ_vSk30sIbEL5QLHOaY39Tupf30alCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920219561</pqid></control><display><type>article</type><title>Enhanced hydrogen storage of alkaline earth metal-decorated Bn (n = 3–14) nanoclusters: a DFT study</title><source>Springer Nature - Complete Springer Journals</source><creator>Duraisamy, Parimala devi ; S, Prince Makarios Paul ; Gopalan, Praveena ; Angamuthu, Abiram</creator><creatorcontrib>Duraisamy, Parimala devi ; S, Prince Makarios Paul ; Gopalan, Praveena ; Angamuthu, Abiram</creatorcontrib><description>Context
Boron-based nanostructures hold significant promise for revolutionizing hydrogen storage technologies due to their exceptional properties and potential in efficiently accommodating and interacting with hydrogen molecules. In this paper, boron-based B
n
(
n
= 3–14) nanoclusters decorated with alkaline earth metals (AEM = Ca and Be) were investigated for hydrogen storage applications based on density function theory (DFT) calculations. To evaluate H
2
adsorption capability, the adsorption energies, frontier molecular orbitals (FMOs), natural bond orbital (NBO), and quantum theory of atoms in molecule (QTAIM) analysis are performed. The primary aim of this research work is to achieve targeted value of 5.5 wt% set by the US Department of Energy (DOE) for the year 2025. The results revealed that B
5
Ca
2
, B
6
Ca
2
, and B
10
Ca
2
structures have the ability to hold up to 12H
2
molecules with gravimetric capacities of 15.20, 14.21, and 8.60 wt%, respectively, when compared to other boron structures decorated with calcium. Similarly, for Be-decorated structure, B
3
Be
2
structure can accommodate 3H
2
molecules with gravimetric capacity of 10.59 wt%. The result of this study indicates that AEM-decorated B
n
nanoclusters hold great promise as potential materials for hydrogen storage.
Methods
Density functional theory (DFT) approach at ωB97XD/6-311++G(d,p) level of theory is employed to investigate the possibility of storing H
2
molecules on alkaline earth metal (AEM = Ca and Be)-decorated B
n
(
n
= 3–14) nanoclusters. All DFT computations were performed using Gaussian 09 software. To calculate frontier molecular orbitals (FMOs) and quantum theory of atoms in molecule (QTAIM) analysis, we have used GaussView and Multiwfn software, respectively.</description><identifier>ISSN: 1610-2940</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-024-05847-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adsorption ; Alkaline earth metals ; Beryllium ; Boron ; Calcium ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; computer software ; Decoration ; Density functional theory ; Earth ; Hydrogen ; Hydrogen storage ; Mathematical analysis ; Molecular Medicine ; Molecular orbitals ; Molecular structure ; Nanoclusters ; nanoparticles ; Original Paper ; quantum mechanics ; Quantum theory ; Software ; Theoretical and Computational Chemistry</subject><ispartof>Journal of molecular modeling, 2024-02, Vol.30 (2), p.55-55, Article 55</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c336t-a46e611f375432f8ff1f0ce3fc77c10577c7146bd45e0ef932659fc99ca9f6643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00894-024-05847-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00894-024-05847-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Duraisamy, Parimala devi</creatorcontrib><creatorcontrib>S, Prince Makarios Paul</creatorcontrib><creatorcontrib>Gopalan, Praveena</creatorcontrib><creatorcontrib>Angamuthu, Abiram</creatorcontrib><title>Enhanced hydrogen storage of alkaline earth metal-decorated Bn (n = 3–14) nanoclusters: a DFT study</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><description>Context
Boron-based nanostructures hold significant promise for revolutionizing hydrogen storage technologies due to their exceptional properties and potential in efficiently accommodating and interacting with hydrogen molecules. In this paper, boron-based B
n
(
n
= 3–14) nanoclusters decorated with alkaline earth metals (AEM = Ca and Be) were investigated for hydrogen storage applications based on density function theory (DFT) calculations. To evaluate H
2
adsorption capability, the adsorption energies, frontier molecular orbitals (FMOs), natural bond orbital (NBO), and quantum theory of atoms in molecule (QTAIM) analysis are performed. The primary aim of this research work is to achieve targeted value of 5.5 wt% set by the US Department of Energy (DOE) for the year 2025. The results revealed that B
5
Ca
2
, B
6
Ca
2
, and B
10
Ca
2
structures have the ability to hold up to 12H
2
molecules with gravimetric capacities of 15.20, 14.21, and 8.60 wt%, respectively, when compared to other boron structures decorated with calcium. Similarly, for Be-decorated structure, B
3
Be
2
structure can accommodate 3H
2
molecules with gravimetric capacity of 10.59 wt%. The result of this study indicates that AEM-decorated B
n
nanoclusters hold great promise as potential materials for hydrogen storage.
Methods
Density functional theory (DFT) approach at ωB97XD/6-311++G(d,p) level of theory is employed to investigate the possibility of storing H
2
molecules on alkaline earth metal (AEM = Ca and Be)-decorated B
n
(
n
= 3–14) nanoclusters. All DFT computations were performed using Gaussian 09 software. To calculate frontier molecular orbitals (FMOs) and quantum theory of atoms in molecule (QTAIM) analysis, we have used GaussView and Multiwfn software, respectively.</description><subject>Adsorption</subject><subject>Alkaline earth metals</subject><subject>Beryllium</subject><subject>Boron</subject><subject>Calcium</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>computer software</subject><subject>Decoration</subject><subject>Density functional theory</subject><subject>Earth</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Mathematical analysis</subject><subject>Molecular Medicine</subject><subject>Molecular orbitals</subject><subject>Molecular structure</subject><subject>Nanoclusters</subject><subject>nanoparticles</subject><subject>Original Paper</subject><subject>quantum mechanics</subject><subject>Quantum theory</subject><subject>Software</subject><subject>Theoretical and Computational Chemistry</subject><issn>1610-2940</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkbtOHDEUhq0IpKyAF0hlKQ0pJhxfZxyJAjYsICHRkNpyPMd7yawH7BmJ7XgH3jBPEi-LhJQCCh833_8dHf2EfGHwnQHUJxmgMbICXp5qZF09fiITMLKpFHCxRyZMM6i4kfCZHOW8AgDGlVacTwhexIWLHlu62LSpn2OkeeiTmyPtA3XdH9ctI1J0aVjQNQ6uq1r0BRhK5DzS40hPqfj79MzkNxpd7H035gFT_kEd_Tm7K7ax3RyS_eC6jEev_wH5Nbu4m15VN7eX19Ozm8oLoYfKSY2asSBqJQUPTQgsgEcRfF17BqrMmkn9u5UKAYMRXCsTvDHemaC1FAfkeOe9T_3DiHmw62X22HUuYj9mK5gSmum6YR-i3PCyUCgjCvr1P3TVjymWQ14ozozSWyHfUT71OScM9j4t1y5tLAO77cnuerKlJ_vSk30sIbEL5QLHOaY39Tupf30alCs</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Duraisamy, Parimala devi</creator><creator>S, Prince Makarios Paul</creator><creator>Gopalan, Praveena</creator><creator>Angamuthu, Abiram</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240201</creationdate><title>Enhanced hydrogen storage of alkaline earth metal-decorated Bn (n = 3–14) nanoclusters: a DFT study</title><author>Duraisamy, Parimala devi ; S, Prince Makarios Paul ; Gopalan, Praveena ; Angamuthu, Abiram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-a46e611f375432f8ff1f0ce3fc77c10577c7146bd45e0ef932659fc99ca9f6643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Alkaline earth metals</topic><topic>Beryllium</topic><topic>Boron</topic><topic>Calcium</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>computer software</topic><topic>Decoration</topic><topic>Density functional theory</topic><topic>Earth</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Mathematical analysis</topic><topic>Molecular Medicine</topic><topic>Molecular orbitals</topic><topic>Molecular structure</topic><topic>Nanoclusters</topic><topic>nanoparticles</topic><topic>Original Paper</topic><topic>quantum mechanics</topic><topic>Quantum theory</topic><topic>Software</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duraisamy, Parimala devi</creatorcontrib><creatorcontrib>S, Prince Makarios Paul</creatorcontrib><creatorcontrib>Gopalan, Praveena</creatorcontrib><creatorcontrib>Angamuthu, Abiram</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duraisamy, Parimala devi</au><au>S, Prince Makarios Paul</au><au>Gopalan, Praveena</au><au>Angamuthu, Abiram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced hydrogen storage of alkaline earth metal-decorated Bn (n = 3–14) nanoclusters: a DFT study</atitle><jtitle>Journal of molecular modeling</jtitle><stitle>J Mol Model</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>30</volume><issue>2</issue><spage>55</spage><epage>55</epage><pages>55-55</pages><artnum>55</artnum><issn>1610-2940</issn><eissn>0948-5023</eissn><abstract>Context
Boron-based nanostructures hold significant promise for revolutionizing hydrogen storage technologies due to their exceptional properties and potential in efficiently accommodating and interacting with hydrogen molecules. In this paper, boron-based B
n
(
n
= 3–14) nanoclusters decorated with alkaline earth metals (AEM = Ca and Be) were investigated for hydrogen storage applications based on density function theory (DFT) calculations. To evaluate H
2
adsorption capability, the adsorption energies, frontier molecular orbitals (FMOs), natural bond orbital (NBO), and quantum theory of atoms in molecule (QTAIM) analysis are performed. The primary aim of this research work is to achieve targeted value of 5.5 wt% set by the US Department of Energy (DOE) for the year 2025. The results revealed that B
5
Ca
2
, B
6
Ca
2
, and B
10
Ca
2
structures have the ability to hold up to 12H
2
molecules with gravimetric capacities of 15.20, 14.21, and 8.60 wt%, respectively, when compared to other boron structures decorated with calcium. Similarly, for Be-decorated structure, B
3
Be
2
structure can accommodate 3H
2
molecules with gravimetric capacity of 10.59 wt%. The result of this study indicates that AEM-decorated B
n
nanoclusters hold great promise as potential materials for hydrogen storage.
Methods
Density functional theory (DFT) approach at ωB97XD/6-311++G(d,p) level of theory is employed to investigate the possibility of storing H
2
molecules on alkaline earth metal (AEM = Ca and Be)-decorated B
n
(
n
= 3–14) nanoclusters. All DFT computations were performed using Gaussian 09 software. To calculate frontier molecular orbitals (FMOs) and quantum theory of atoms in molecule (QTAIM) analysis, we have used GaussView and Multiwfn software, respectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00894-024-05847-x</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1610-2940 |
ispartof | Journal of molecular modeling, 2024-02, Vol.30 (2), p.55-55, Article 55 |
issn | 1610-2940 0948-5023 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153616781 |
source | Springer Nature - Complete Springer Journals |
subjects | Adsorption Alkaline earth metals Beryllium Boron Calcium Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Computer Appl. in Life Sciences Computer Applications in Chemistry computer software Decoration Density functional theory Earth Hydrogen Hydrogen storage Mathematical analysis Molecular Medicine Molecular orbitals Molecular structure Nanoclusters nanoparticles Original Paper quantum mechanics Quantum theory Software Theoretical and Computational Chemistry |
title | Enhanced hydrogen storage of alkaline earth metal-decorated Bn (n = 3–14) nanoclusters: a DFT study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A55%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20hydrogen%20storage%20of%20alkaline%20earth%20metal-decorated%20Bn%20(n%20=%203%E2%80%9314)%20nanoclusters:%20a%20DFT%20study&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=Duraisamy,%20Parimala%20devi&rft.date=2024-02-01&rft.volume=30&rft.issue=2&rft.spage=55&rft.epage=55&rft.pages=55-55&rft.artnum=55&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-024-05847-x&rft_dat=%3Cproquest_cross%3E3153616781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920219561&rft_id=info:pmid/&rfr_iscdi=true |