Insights into the complementation potential of the extreme acidophile’s orthologue in replacing Escherichia coli hfq gene—particularly in bacterial resistance to environmental stress

Acidithiobacillus caldus is a typical extreme acidophile widely used in the biohydrometallurgical industry, which often experiences extreme environmental stress in its natural habitat. Hfq, an RNA-binding protein, typically functions as a global regulator involved in various cellular physiological p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of microbiology & biotechnology 2024-04, Vol.40 (4), p.105-105, Article 105
Hauptverfasser: Hu, Wenbo, Huo, Xingyu, Bai, Haochen, Chen, Zongling, Zhang, Jianxin, Yang, Hailin, Feng, Shoushuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue 4
container_start_page 105
container_title World journal of microbiology & biotechnology
container_volume 40
creator Hu, Wenbo
Huo, Xingyu
Bai, Haochen
Chen, Zongling
Zhang, Jianxin
Yang, Hailin
Feng, Shoushuai
description Acidithiobacillus caldus is a typical extreme acidophile widely used in the biohydrometallurgical industry, which often experiences extreme environmental stress in its natural habitat. Hfq, an RNA-binding protein, typically functions as a global regulator involved in various cellular physiological processes. Yet, the biological functions of Hfq derived from such extreme acidophile have not been extensively investigated. In this study, the recombinant strain Δ hfq / Achfq , constructed by CRISPR/Cas9-mediated chromosome integration, fully or partially restored the phenotypic defects caused by hfq deletion in Escherichia coli , including impaired growth performance, abnormal cell morphology, impaired swarming motility, decreased stress resistance, decreased intracellular ATP and free amino acid levels, and attenuated biofilm formation. Particularly noteworthy, the intracellular ATP level and biofilm production of the recombinant strain were increased by 12.2% and 7.0%, respectively, compared to the Δ hfq mutant. Transcriptomic analysis revealed that even under heterologous expression, Ac Hfq exerted global regulatory effects on multiple cellular processes, including metabolism, environmental signal processing, and motility. Finally, we established a potential working model to illustrate the regulatory mechanism of Ac Hfq in bacterial resistance to environmental stress.
doi_str_mv 10.1007/s11274-024-03924-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153616552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153616552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d3bac8379e96eb1583dfcae31bebe6fab0c16a56cf6ca74cf66085275a0b8e113</originalsourceid><addsrcrecordid>eNqFkrGO1DAQhi0E4paFF6BAlmhoAna8duISnQ446SQaqCPHO0l8cuyc7SCu4yFoeBUehydhdvcAiQIKz1iab_4Zyz8hTzl7yRlrXmXO62ZXsRqP0Id4j2y4bETFdFPfJxumpa6E1uKMPMr5mjFs0-IhOROtaFXN9YZ8vwzZjVPJ1IUSaZmA2jgvHmYIxRQXA11iwbsznsbhCMDnkrBOjXX7uEzOw48v3zKNqUzRx3EF1KIJFo9AGOlFthMkZydnUNs7Og03dISAXV8Xk4qzqzfJ3x66emMLsjgrQXa5mGCB4l4QPrkUw3EpTzPOz_kxeTAYn-HJXd6Sj28uPpy_q67ev708f31VWSF1qfYCRVvRaNAKei5bsR-sAcF76EENpmeWKyOVHZQ1zQ6TYq2sG2lY3wLnYktenHSXFG9WyKWbXbbgvQkQ19wJLoXiSsr6v2itBds1UrcH9Plf6HVcU8CHHCmmd61SSNUnyqaYc4KhW5KbTbrtOOsOJuhOJujQBN3RBBi35Nmd9NrPsP_d8uvXERAnIGMpjJD-zP6H7E_7usSO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930094866</pqid></control><display><type>article</type><title>Insights into the complementation potential of the extreme acidophile’s orthologue in replacing Escherichia coli hfq gene—particularly in bacterial resistance to environmental stress</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hu, Wenbo ; Huo, Xingyu ; Bai, Haochen ; Chen, Zongling ; Zhang, Jianxin ; Yang, Hailin ; Feng, Shoushuai</creator><creatorcontrib>Hu, Wenbo ; Huo, Xingyu ; Bai, Haochen ; Chen, Zongling ; Zhang, Jianxin ; Yang, Hailin ; Feng, Shoushuai</creatorcontrib><description>Acidithiobacillus caldus is a typical extreme acidophile widely used in the biohydrometallurgical industry, which often experiences extreme environmental stress in its natural habitat. Hfq, an RNA-binding protein, typically functions as a global regulator involved in various cellular physiological processes. Yet, the biological functions of Hfq derived from such extreme acidophile have not been extensively investigated. In this study, the recombinant strain Δ hfq / Achfq , constructed by CRISPR/Cas9-mediated chromosome integration, fully or partially restored the phenotypic defects caused by hfq deletion in Escherichia coli , including impaired growth performance, abnormal cell morphology, impaired swarming motility, decreased stress resistance, decreased intracellular ATP and free amino acid levels, and attenuated biofilm formation. Particularly noteworthy, the intracellular ATP level and biofilm production of the recombinant strain were increased by 12.2% and 7.0%, respectively, compared to the Δ hfq mutant. Transcriptomic analysis revealed that even under heterologous expression, Ac Hfq exerted global regulatory effects on multiple cellular processes, including metabolism, environmental signal processing, and motility. Finally, we established a potential working model to illustrate the regulatory mechanism of Ac Hfq in bacterial resistance to environmental stress.</description><identifier>ISSN: 0959-3993</identifier><identifier>EISSN: 1573-0972</identifier><identifier>DOI: 10.1007/s11274-024-03924-0</identifier><identifier>PMID: 38386219</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acidithiobacillus caldus ; Adenosine Triphosphate ; Amino Acids ; Applied Microbiology ; Biochemistry ; biofilm ; Biofilms ; Biological activity ; Biomedical and Life Sciences ; Biotechnology ; Cell morphology ; Chromosomes ; Complementation ; CRISPR ; CRISPR-Cas systems ; Cytology ; E coli ; Environmental Engineering/Biotechnology ; Environmental stress ; Escherichia coli ; Escherichia coli - genetics ; free amino acids ; Gene Expression Profiling ; growth performance ; habitats ; heterologous gene expression ; industry ; Intracellular ; Life Sciences ; metabolism ; Microbiology ; Motility ; mutants ; phenotype ; Regulatory mechanisms (biology) ; RNA-binding protein ; RNA-binding proteins ; Signal processing ; Strain ; stress tolerance ; Swarming ; Transcriptomics</subject><ispartof>World journal of microbiology &amp; biotechnology, 2024-04, Vol.40 (4), p.105-105, Article 105</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-d3bac8379e96eb1583dfcae31bebe6fab0c16a56cf6ca74cf66085275a0b8e113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11274-024-03924-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11274-024-03924-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38386219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Wenbo</creatorcontrib><creatorcontrib>Huo, Xingyu</creatorcontrib><creatorcontrib>Bai, Haochen</creatorcontrib><creatorcontrib>Chen, Zongling</creatorcontrib><creatorcontrib>Zhang, Jianxin</creatorcontrib><creatorcontrib>Yang, Hailin</creatorcontrib><creatorcontrib>Feng, Shoushuai</creatorcontrib><title>Insights into the complementation potential of the extreme acidophile’s orthologue in replacing Escherichia coli hfq gene—particularly in bacterial resistance to environmental stress</title><title>World journal of microbiology &amp; biotechnology</title><addtitle>World J Microbiol Biotechnol</addtitle><addtitle>World J Microbiol Biotechnol</addtitle><description>Acidithiobacillus caldus is a typical extreme acidophile widely used in the biohydrometallurgical industry, which often experiences extreme environmental stress in its natural habitat. Hfq, an RNA-binding protein, typically functions as a global regulator involved in various cellular physiological processes. Yet, the biological functions of Hfq derived from such extreme acidophile have not been extensively investigated. In this study, the recombinant strain Δ hfq / Achfq , constructed by CRISPR/Cas9-mediated chromosome integration, fully or partially restored the phenotypic defects caused by hfq deletion in Escherichia coli , including impaired growth performance, abnormal cell morphology, impaired swarming motility, decreased stress resistance, decreased intracellular ATP and free amino acid levels, and attenuated biofilm formation. Particularly noteworthy, the intracellular ATP level and biofilm production of the recombinant strain were increased by 12.2% and 7.0%, respectively, compared to the Δ hfq mutant. Transcriptomic analysis revealed that even under heterologous expression, Ac Hfq exerted global regulatory effects on multiple cellular processes, including metabolism, environmental signal processing, and motility. Finally, we established a potential working model to illustrate the regulatory mechanism of Ac Hfq in bacterial resistance to environmental stress.</description><subject>Acidithiobacillus caldus</subject><subject>Adenosine Triphosphate</subject><subject>Amino Acids</subject><subject>Applied Microbiology</subject><subject>Biochemistry</subject><subject>biofilm</subject><subject>Biofilms</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell morphology</subject><subject>Chromosomes</subject><subject>Complementation</subject><subject>CRISPR</subject><subject>CRISPR-Cas systems</subject><subject>Cytology</subject><subject>E coli</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Environmental stress</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>free amino acids</subject><subject>Gene Expression Profiling</subject><subject>growth performance</subject><subject>habitats</subject><subject>heterologous gene expression</subject><subject>industry</subject><subject>Intracellular</subject><subject>Life Sciences</subject><subject>metabolism</subject><subject>Microbiology</subject><subject>Motility</subject><subject>mutants</subject><subject>phenotype</subject><subject>Regulatory mechanisms (biology)</subject><subject>RNA-binding protein</subject><subject>RNA-binding proteins</subject><subject>Signal processing</subject><subject>Strain</subject><subject>stress tolerance</subject><subject>Swarming</subject><subject>Transcriptomics</subject><issn>0959-3993</issn><issn>1573-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkrGO1DAQhi0E4paFF6BAlmhoAna8duISnQ446SQaqCPHO0l8cuyc7SCu4yFoeBUehydhdvcAiQIKz1iab_4Zyz8hTzl7yRlrXmXO62ZXsRqP0Id4j2y4bETFdFPfJxumpa6E1uKMPMr5mjFs0-IhOROtaFXN9YZ8vwzZjVPJ1IUSaZmA2jgvHmYIxRQXA11iwbsznsbhCMDnkrBOjXX7uEzOw48v3zKNqUzRx3EF1KIJFo9AGOlFthMkZydnUNs7Og03dISAXV8Xk4qzqzfJ3x66emMLsjgrQXa5mGCB4l4QPrkUw3EpTzPOz_kxeTAYn-HJXd6Sj28uPpy_q67ev708f31VWSF1qfYCRVvRaNAKei5bsR-sAcF76EENpmeWKyOVHZQ1zQ6TYq2sG2lY3wLnYktenHSXFG9WyKWbXbbgvQkQ19wJLoXiSsr6v2itBds1UrcH9Plf6HVcU8CHHCmmd61SSNUnyqaYc4KhW5KbTbrtOOsOJuhOJujQBN3RBBi35Nmd9NrPsP_d8uvXERAnIGMpjJD-zP6H7E_7usSO</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Hu, Wenbo</creator><creator>Huo, Xingyu</creator><creator>Bai, Haochen</creator><creator>Chen, Zongling</creator><creator>Zhang, Jianxin</creator><creator>Yang, Hailin</creator><creator>Feng, Shoushuai</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>L7M</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240401</creationdate><title>Insights into the complementation potential of the extreme acidophile’s orthologue in replacing Escherichia coli hfq gene—particularly in bacterial resistance to environmental stress</title><author>Hu, Wenbo ; Huo, Xingyu ; Bai, Haochen ; Chen, Zongling ; Zhang, Jianxin ; Yang, Hailin ; Feng, Shoushuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d3bac8379e96eb1583dfcae31bebe6fab0c16a56cf6ca74cf66085275a0b8e113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acidithiobacillus caldus</topic><topic>Adenosine Triphosphate</topic><topic>Amino Acids</topic><topic>Applied Microbiology</topic><topic>Biochemistry</topic><topic>biofilm</topic><topic>Biofilms</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell morphology</topic><topic>Chromosomes</topic><topic>Complementation</topic><topic>CRISPR</topic><topic>CRISPR-Cas systems</topic><topic>Cytology</topic><topic>E coli</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Environmental stress</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>free amino acids</topic><topic>Gene Expression Profiling</topic><topic>growth performance</topic><topic>habitats</topic><topic>heterologous gene expression</topic><topic>industry</topic><topic>Intracellular</topic><topic>Life Sciences</topic><topic>metabolism</topic><topic>Microbiology</topic><topic>Motility</topic><topic>mutants</topic><topic>phenotype</topic><topic>Regulatory mechanisms (biology)</topic><topic>RNA-binding protein</topic><topic>RNA-binding proteins</topic><topic>Signal processing</topic><topic>Strain</topic><topic>stress tolerance</topic><topic>Swarming</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Wenbo</creatorcontrib><creatorcontrib>Huo, Xingyu</creatorcontrib><creatorcontrib>Bai, Haochen</creatorcontrib><creatorcontrib>Chen, Zongling</creatorcontrib><creatorcontrib>Zhang, Jianxin</creatorcontrib><creatorcontrib>Yang, Hailin</creatorcontrib><creatorcontrib>Feng, Shoushuai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>World journal of microbiology &amp; biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Wenbo</au><au>Huo, Xingyu</au><au>Bai, Haochen</au><au>Chen, Zongling</au><au>Zhang, Jianxin</au><au>Yang, Hailin</au><au>Feng, Shoushuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the complementation potential of the extreme acidophile’s orthologue in replacing Escherichia coli hfq gene—particularly in bacterial resistance to environmental stress</atitle><jtitle>World journal of microbiology &amp; biotechnology</jtitle><stitle>World J Microbiol Biotechnol</stitle><addtitle>World J Microbiol Biotechnol</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>40</volume><issue>4</issue><spage>105</spage><epage>105</epage><pages>105-105</pages><artnum>105</artnum><issn>0959-3993</issn><eissn>1573-0972</eissn><abstract>Acidithiobacillus caldus is a typical extreme acidophile widely used in the biohydrometallurgical industry, which often experiences extreme environmental stress in its natural habitat. Hfq, an RNA-binding protein, typically functions as a global regulator involved in various cellular physiological processes. Yet, the biological functions of Hfq derived from such extreme acidophile have not been extensively investigated. In this study, the recombinant strain Δ hfq / Achfq , constructed by CRISPR/Cas9-mediated chromosome integration, fully or partially restored the phenotypic defects caused by hfq deletion in Escherichia coli , including impaired growth performance, abnormal cell morphology, impaired swarming motility, decreased stress resistance, decreased intracellular ATP and free amino acid levels, and attenuated biofilm formation. Particularly noteworthy, the intracellular ATP level and biofilm production of the recombinant strain were increased by 12.2% and 7.0%, respectively, compared to the Δ hfq mutant. Transcriptomic analysis revealed that even under heterologous expression, Ac Hfq exerted global regulatory effects on multiple cellular processes, including metabolism, environmental signal processing, and motility. Finally, we established a potential working model to illustrate the regulatory mechanism of Ac Hfq in bacterial resistance to environmental stress.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>38386219</pmid><doi>10.1007/s11274-024-03924-0</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0959-3993
ispartof World journal of microbiology & biotechnology, 2024-04, Vol.40 (4), p.105-105, Article 105
issn 0959-3993
1573-0972
language eng
recordid cdi_proquest_miscellaneous_3153616552
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Acidithiobacillus caldus
Adenosine Triphosphate
Amino Acids
Applied Microbiology
Biochemistry
biofilm
Biofilms
Biological activity
Biomedical and Life Sciences
Biotechnology
Cell morphology
Chromosomes
Complementation
CRISPR
CRISPR-Cas systems
Cytology
E coli
Environmental Engineering/Biotechnology
Environmental stress
Escherichia coli
Escherichia coli - genetics
free amino acids
Gene Expression Profiling
growth performance
habitats
heterologous gene expression
industry
Intracellular
Life Sciences
metabolism
Microbiology
Motility
mutants
phenotype
Regulatory mechanisms (biology)
RNA-binding protein
RNA-binding proteins
Signal processing
Strain
stress tolerance
Swarming
Transcriptomics
title Insights into the complementation potential of the extreme acidophile’s orthologue in replacing Escherichia coli hfq gene—particularly in bacterial resistance to environmental stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%20complementation%20potential%20of%20the%20extreme%20acidophile%E2%80%99s%20orthologue%20in%20replacing%20Escherichia%20coli%20hfq%20gene%E2%80%94particularly%20in%20bacterial%20resistance%20to%20environmental%20stress&rft.jtitle=World%20journal%20of%20microbiology%20&%20biotechnology&rft.au=Hu,%20Wenbo&rft.date=2024-04-01&rft.volume=40&rft.issue=4&rft.spage=105&rft.epage=105&rft.pages=105-105&rft.artnum=105&rft.issn=0959-3993&rft.eissn=1573-0972&rft_id=info:doi/10.1007/s11274-024-03924-0&rft_dat=%3Cproquest_cross%3E3153616552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2930094866&rft_id=info:pmid/38386219&rfr_iscdi=true