Insights into the complementation potential of the extreme acidophile’s orthologue in replacing Escherichia coli hfq gene—particularly in bacterial resistance to environmental stress
Acidithiobacillus caldus is a typical extreme acidophile widely used in the biohydrometallurgical industry, which often experiences extreme environmental stress in its natural habitat. Hfq, an RNA-binding protein, typically functions as a global regulator involved in various cellular physiological p...
Gespeichert in:
Veröffentlicht in: | World journal of microbiology & biotechnology 2024-04, Vol.40 (4), p.105-105, Article 105 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105 |
---|---|
container_issue | 4 |
container_start_page | 105 |
container_title | World journal of microbiology & biotechnology |
container_volume | 40 |
creator | Hu, Wenbo Huo, Xingyu Bai, Haochen Chen, Zongling Zhang, Jianxin Yang, Hailin Feng, Shoushuai |
description | Acidithiobacillus caldus
is a typical extreme acidophile widely used in the biohydrometallurgical industry, which often experiences extreme environmental stress in its natural habitat. Hfq, an RNA-binding protein, typically functions as a global regulator involved in various cellular physiological processes. Yet, the biological functions of Hfq derived from such extreme acidophile have not been extensively investigated. In this study, the recombinant strain Δ
hfq
/
Achfq
, constructed by CRISPR/Cas9-mediated chromosome integration, fully or partially restored the phenotypic defects caused by
hfq
deletion in
Escherichia coli
, including impaired growth performance, abnormal cell morphology, impaired swarming motility, decreased stress resistance, decreased intracellular ATP and free amino acid levels, and attenuated biofilm formation. Particularly noteworthy, the intracellular ATP level and biofilm production of the recombinant strain were increased by 12.2% and 7.0%, respectively, compared to the Δ
hfq
mutant. Transcriptomic analysis revealed that even under heterologous expression,
Ac
Hfq exerted global regulatory effects on multiple cellular processes, including metabolism, environmental signal processing, and motility. Finally, we established a potential working model to illustrate the regulatory mechanism of
Ac
Hfq in bacterial resistance to environmental stress. |
doi_str_mv | 10.1007/s11274-024-03924-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153616552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153616552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d3bac8379e96eb1583dfcae31bebe6fab0c16a56cf6ca74cf66085275a0b8e113</originalsourceid><addsrcrecordid>eNqFkrGO1DAQhi0E4paFF6BAlmhoAna8duISnQ446SQaqCPHO0l8cuyc7SCu4yFoeBUehydhdvcAiQIKz1iab_4Zyz8hTzl7yRlrXmXO62ZXsRqP0Id4j2y4bETFdFPfJxumpa6E1uKMPMr5mjFs0-IhOROtaFXN9YZ8vwzZjVPJ1IUSaZmA2jgvHmYIxRQXA11iwbsznsbhCMDnkrBOjXX7uEzOw48v3zKNqUzRx3EF1KIJFo9AGOlFthMkZydnUNs7Og03dISAXV8Xk4qzqzfJ3x66emMLsjgrQXa5mGCB4l4QPrkUw3EpTzPOz_kxeTAYn-HJXd6Sj28uPpy_q67ev708f31VWSF1qfYCRVvRaNAKei5bsR-sAcF76EENpmeWKyOVHZQ1zQ6TYq2sG2lY3wLnYktenHSXFG9WyKWbXbbgvQkQ19wJLoXiSsr6v2itBds1UrcH9Plf6HVcU8CHHCmmd61SSNUnyqaYc4KhW5KbTbrtOOsOJuhOJujQBN3RBBi35Nmd9NrPsP_d8uvXERAnIGMpjJD-zP6H7E_7usSO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930094866</pqid></control><display><type>article</type><title>Insights into the complementation potential of the extreme acidophile’s orthologue in replacing Escherichia coli hfq gene—particularly in bacterial resistance to environmental stress</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hu, Wenbo ; Huo, Xingyu ; Bai, Haochen ; Chen, Zongling ; Zhang, Jianxin ; Yang, Hailin ; Feng, Shoushuai</creator><creatorcontrib>Hu, Wenbo ; Huo, Xingyu ; Bai, Haochen ; Chen, Zongling ; Zhang, Jianxin ; Yang, Hailin ; Feng, Shoushuai</creatorcontrib><description>Acidithiobacillus caldus
is a typical extreme acidophile widely used in the biohydrometallurgical industry, which often experiences extreme environmental stress in its natural habitat. Hfq, an RNA-binding protein, typically functions as a global regulator involved in various cellular physiological processes. Yet, the biological functions of Hfq derived from such extreme acidophile have not been extensively investigated. In this study, the recombinant strain Δ
hfq
/
Achfq
, constructed by CRISPR/Cas9-mediated chromosome integration, fully or partially restored the phenotypic defects caused by
hfq
deletion in
Escherichia coli
, including impaired growth performance, abnormal cell morphology, impaired swarming motility, decreased stress resistance, decreased intracellular ATP and free amino acid levels, and attenuated biofilm formation. Particularly noteworthy, the intracellular ATP level and biofilm production of the recombinant strain were increased by 12.2% and 7.0%, respectively, compared to the Δ
hfq
mutant. Transcriptomic analysis revealed that even under heterologous expression,
Ac
Hfq exerted global regulatory effects on multiple cellular processes, including metabolism, environmental signal processing, and motility. Finally, we established a potential working model to illustrate the regulatory mechanism of
Ac
Hfq in bacterial resistance to environmental stress.</description><identifier>ISSN: 0959-3993</identifier><identifier>EISSN: 1573-0972</identifier><identifier>DOI: 10.1007/s11274-024-03924-0</identifier><identifier>PMID: 38386219</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acidithiobacillus caldus ; Adenosine Triphosphate ; Amino Acids ; Applied Microbiology ; Biochemistry ; biofilm ; Biofilms ; Biological activity ; Biomedical and Life Sciences ; Biotechnology ; Cell morphology ; Chromosomes ; Complementation ; CRISPR ; CRISPR-Cas systems ; Cytology ; E coli ; Environmental Engineering/Biotechnology ; Environmental stress ; Escherichia coli ; Escherichia coli - genetics ; free amino acids ; Gene Expression Profiling ; growth performance ; habitats ; heterologous gene expression ; industry ; Intracellular ; Life Sciences ; metabolism ; Microbiology ; Motility ; mutants ; phenotype ; Regulatory mechanisms (biology) ; RNA-binding protein ; RNA-binding proteins ; Signal processing ; Strain ; stress tolerance ; Swarming ; Transcriptomics</subject><ispartof>World journal of microbiology & biotechnology, 2024-04, Vol.40 (4), p.105-105, Article 105</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-d3bac8379e96eb1583dfcae31bebe6fab0c16a56cf6ca74cf66085275a0b8e113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11274-024-03924-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11274-024-03924-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38386219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Wenbo</creatorcontrib><creatorcontrib>Huo, Xingyu</creatorcontrib><creatorcontrib>Bai, Haochen</creatorcontrib><creatorcontrib>Chen, Zongling</creatorcontrib><creatorcontrib>Zhang, Jianxin</creatorcontrib><creatorcontrib>Yang, Hailin</creatorcontrib><creatorcontrib>Feng, Shoushuai</creatorcontrib><title>Insights into the complementation potential of the extreme acidophile’s orthologue in replacing Escherichia coli hfq gene—particularly in bacterial resistance to environmental stress</title><title>World journal of microbiology & biotechnology</title><addtitle>World J Microbiol Biotechnol</addtitle><addtitle>World J Microbiol Biotechnol</addtitle><description>Acidithiobacillus caldus
is a typical extreme acidophile widely used in the biohydrometallurgical industry, which often experiences extreme environmental stress in its natural habitat. Hfq, an RNA-binding protein, typically functions as a global regulator involved in various cellular physiological processes. Yet, the biological functions of Hfq derived from such extreme acidophile have not been extensively investigated. In this study, the recombinant strain Δ
hfq
/
Achfq
, constructed by CRISPR/Cas9-mediated chromosome integration, fully or partially restored the phenotypic defects caused by
hfq
deletion in
Escherichia coli
, including impaired growth performance, abnormal cell morphology, impaired swarming motility, decreased stress resistance, decreased intracellular ATP and free amino acid levels, and attenuated biofilm formation. Particularly noteworthy, the intracellular ATP level and biofilm production of the recombinant strain were increased by 12.2% and 7.0%, respectively, compared to the Δ
hfq
mutant. Transcriptomic analysis revealed that even under heterologous expression,
Ac
Hfq exerted global regulatory effects on multiple cellular processes, including metabolism, environmental signal processing, and motility. Finally, we established a potential working model to illustrate the regulatory mechanism of
Ac
Hfq in bacterial resistance to environmental stress.</description><subject>Acidithiobacillus caldus</subject><subject>Adenosine Triphosphate</subject><subject>Amino Acids</subject><subject>Applied Microbiology</subject><subject>Biochemistry</subject><subject>biofilm</subject><subject>Biofilms</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell morphology</subject><subject>Chromosomes</subject><subject>Complementation</subject><subject>CRISPR</subject><subject>CRISPR-Cas systems</subject><subject>Cytology</subject><subject>E coli</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Environmental stress</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>free amino acids</subject><subject>Gene Expression Profiling</subject><subject>growth performance</subject><subject>habitats</subject><subject>heterologous gene expression</subject><subject>industry</subject><subject>Intracellular</subject><subject>Life Sciences</subject><subject>metabolism</subject><subject>Microbiology</subject><subject>Motility</subject><subject>mutants</subject><subject>phenotype</subject><subject>Regulatory mechanisms (biology)</subject><subject>RNA-binding protein</subject><subject>RNA-binding proteins</subject><subject>Signal processing</subject><subject>Strain</subject><subject>stress tolerance</subject><subject>Swarming</subject><subject>Transcriptomics</subject><issn>0959-3993</issn><issn>1573-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkrGO1DAQhi0E4paFF6BAlmhoAna8duISnQ446SQaqCPHO0l8cuyc7SCu4yFoeBUehydhdvcAiQIKz1iab_4Zyz8hTzl7yRlrXmXO62ZXsRqP0Id4j2y4bETFdFPfJxumpa6E1uKMPMr5mjFs0-IhOROtaFXN9YZ8vwzZjVPJ1IUSaZmA2jgvHmYIxRQXA11iwbsznsbhCMDnkrBOjXX7uEzOw48v3zKNqUzRx3EF1KIJFo9AGOlFthMkZydnUNs7Og03dISAXV8Xk4qzqzfJ3x66emMLsjgrQXa5mGCB4l4QPrkUw3EpTzPOz_kxeTAYn-HJXd6Sj28uPpy_q67ev708f31VWSF1qfYCRVvRaNAKei5bsR-sAcF76EENpmeWKyOVHZQ1zQ6TYq2sG2lY3wLnYktenHSXFG9WyKWbXbbgvQkQ19wJLoXiSsr6v2itBds1UrcH9Plf6HVcU8CHHCmmd61SSNUnyqaYc4KhW5KbTbrtOOsOJuhOJujQBN3RBBi35Nmd9NrPsP_d8uvXERAnIGMpjJD-zP6H7E_7usSO</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Hu, Wenbo</creator><creator>Huo, Xingyu</creator><creator>Bai, Haochen</creator><creator>Chen, Zongling</creator><creator>Zhang, Jianxin</creator><creator>Yang, Hailin</creator><creator>Feng, Shoushuai</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>L7M</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240401</creationdate><title>Insights into the complementation potential of the extreme acidophile’s orthologue in replacing Escherichia coli hfq gene—particularly in bacterial resistance to environmental stress</title><author>Hu, Wenbo ; Huo, Xingyu ; Bai, Haochen ; Chen, Zongling ; Zhang, Jianxin ; Yang, Hailin ; Feng, Shoushuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d3bac8379e96eb1583dfcae31bebe6fab0c16a56cf6ca74cf66085275a0b8e113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acidithiobacillus caldus</topic><topic>Adenosine Triphosphate</topic><topic>Amino Acids</topic><topic>Applied Microbiology</topic><topic>Biochemistry</topic><topic>biofilm</topic><topic>Biofilms</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell morphology</topic><topic>Chromosomes</topic><topic>Complementation</topic><topic>CRISPR</topic><topic>CRISPR-Cas systems</topic><topic>Cytology</topic><topic>E coli</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Environmental stress</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>free amino acids</topic><topic>Gene Expression Profiling</topic><topic>growth performance</topic><topic>habitats</topic><topic>heterologous gene expression</topic><topic>industry</topic><topic>Intracellular</topic><topic>Life Sciences</topic><topic>metabolism</topic><topic>Microbiology</topic><topic>Motility</topic><topic>mutants</topic><topic>phenotype</topic><topic>Regulatory mechanisms (biology)</topic><topic>RNA-binding protein</topic><topic>RNA-binding proteins</topic><topic>Signal processing</topic><topic>Strain</topic><topic>stress tolerance</topic><topic>Swarming</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Wenbo</creatorcontrib><creatorcontrib>Huo, Xingyu</creatorcontrib><creatorcontrib>Bai, Haochen</creatorcontrib><creatorcontrib>Chen, Zongling</creatorcontrib><creatorcontrib>Zhang, Jianxin</creatorcontrib><creatorcontrib>Yang, Hailin</creatorcontrib><creatorcontrib>Feng, Shoushuai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>World journal of microbiology & biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Wenbo</au><au>Huo, Xingyu</au><au>Bai, Haochen</au><au>Chen, Zongling</au><au>Zhang, Jianxin</au><au>Yang, Hailin</au><au>Feng, Shoushuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the complementation potential of the extreme acidophile’s orthologue in replacing Escherichia coli hfq gene—particularly in bacterial resistance to environmental stress</atitle><jtitle>World journal of microbiology & biotechnology</jtitle><stitle>World J Microbiol Biotechnol</stitle><addtitle>World J Microbiol Biotechnol</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>40</volume><issue>4</issue><spage>105</spage><epage>105</epage><pages>105-105</pages><artnum>105</artnum><issn>0959-3993</issn><eissn>1573-0972</eissn><abstract>Acidithiobacillus caldus
is a typical extreme acidophile widely used in the biohydrometallurgical industry, which often experiences extreme environmental stress in its natural habitat. Hfq, an RNA-binding protein, typically functions as a global regulator involved in various cellular physiological processes. Yet, the biological functions of Hfq derived from such extreme acidophile have not been extensively investigated. In this study, the recombinant strain Δ
hfq
/
Achfq
, constructed by CRISPR/Cas9-mediated chromosome integration, fully or partially restored the phenotypic defects caused by
hfq
deletion in
Escherichia coli
, including impaired growth performance, abnormal cell morphology, impaired swarming motility, decreased stress resistance, decreased intracellular ATP and free amino acid levels, and attenuated biofilm formation. Particularly noteworthy, the intracellular ATP level and biofilm production of the recombinant strain were increased by 12.2% and 7.0%, respectively, compared to the Δ
hfq
mutant. Transcriptomic analysis revealed that even under heterologous expression,
Ac
Hfq exerted global regulatory effects on multiple cellular processes, including metabolism, environmental signal processing, and motility. Finally, we established a potential working model to illustrate the regulatory mechanism of
Ac
Hfq in bacterial resistance to environmental stress.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>38386219</pmid><doi>10.1007/s11274-024-03924-0</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0959-3993 |
ispartof | World journal of microbiology & biotechnology, 2024-04, Vol.40 (4), p.105-105, Article 105 |
issn | 0959-3993 1573-0972 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153616552 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Acidithiobacillus caldus Adenosine Triphosphate Amino Acids Applied Microbiology Biochemistry biofilm Biofilms Biological activity Biomedical and Life Sciences Biotechnology Cell morphology Chromosomes Complementation CRISPR CRISPR-Cas systems Cytology E coli Environmental Engineering/Biotechnology Environmental stress Escherichia coli Escherichia coli - genetics free amino acids Gene Expression Profiling growth performance habitats heterologous gene expression industry Intracellular Life Sciences metabolism Microbiology Motility mutants phenotype Regulatory mechanisms (biology) RNA-binding protein RNA-binding proteins Signal processing Strain stress tolerance Swarming Transcriptomics |
title | Insights into the complementation potential of the extreme acidophile’s orthologue in replacing Escherichia coli hfq gene—particularly in bacterial resistance to environmental stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%20complementation%20potential%20of%20the%20extreme%20acidophile%E2%80%99s%20orthologue%20in%20replacing%20Escherichia%20coli%20hfq%20gene%E2%80%94particularly%20in%20bacterial%20resistance%20to%20environmental%20stress&rft.jtitle=World%20journal%20of%20microbiology%20&%20biotechnology&rft.au=Hu,%20Wenbo&rft.date=2024-04-01&rft.volume=40&rft.issue=4&rft.spage=105&rft.epage=105&rft.pages=105-105&rft.artnum=105&rft.issn=0959-3993&rft.eissn=1573-0972&rft_id=info:doi/10.1007/s11274-024-03924-0&rft_dat=%3Cproquest_cross%3E3153616552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2930094866&rft_id=info:pmid/38386219&rfr_iscdi=true |