Efficient extraction of flavonoid compounds in sweet tea (Lithocarpus litseifolius (Hance) Chun) via ultrasonic-natural deep eutectic solvent composite approach based on machine learning

In this study, different types of natural deep eutectic solvents (NADES) were used to extract flavonoids from sweet tea. A total of 7 flavonoids, primarily dihydrochalcones, were successfully extracted. Among the NADESs tested, a ternary deep eutectic solvent Bet-PG-Ur (betaine: propanediol: urea =...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial crops and products 2024-09, Vol.215, p.118434, Article 118434
Hauptverfasser: Wang, Haoxue, Yang, Han, Nie, Siming, Han, Xu, Chang, Yuanhang, Xu, Jian, Nie, Chengdong, Fu, Yujie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 118434
container_title Industrial crops and products
container_volume 215
creator Wang, Haoxue
Yang, Han
Nie, Siming
Han, Xu
Chang, Yuanhang
Xu, Jian
Nie, Chengdong
Fu, Yujie
description In this study, different types of natural deep eutectic solvents (NADES) were used to extract flavonoids from sweet tea. A total of 7 flavonoids, primarily dihydrochalcones, were successfully extracted. Among the NADESs tested, a ternary deep eutectic solvent Bet-PG-Ur (betaine: propanediol: urea = 1: 2: 1, molar ratio) demonstrated the highest extraction efficiency. The chemical and morphological changes of both the NADES and extracted compounds were analyzed using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). To optimize the extraction process and evaluate the total flavonoid yield, response surface methodology (RSM), artificial neural network (ANN), and random forest (RF) techniques were employed. The NADES demonstrated consistent extraction performance even after three cycles of recovery using the SPE method. The results revealed that all three models successfully predicted the TFC in the green extraction ultrasonic process. The ANN model exhibited superior result consistency compared to the others, which can be attributed to the enhanced statistical parameters obtained. The highest total flavonoid content (TFC) of 167.561 mg/g was predicted by ANN and achieved under the following conditions: liquid/solid ratio of 19, water content of 50 %, temperature of 45 °C, and ultrasonic power of 400 W. [Display omitted] •A ternary DES-ultrasonic assisted was used for extraction of 7 flavonoids from sweet tea.•For the first time, machine learning was used to forecast the parameters for the TFC in sweet tea.•In terms of process modeling and prediction, ANN is better than RF and RSM.•The extraction efficiency of DES can reach 80% after 3 cycles of recovery by SPE.•Ultrasound-assisted extraction of 7 flavonoids from sweet tea using NADESs.
doi_str_mv 10.1016/j.indcrop.2024.118434
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153611668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926669024004114</els_id><sourcerecordid>3153611668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-543038ee5a91e8c97294b099a54f588c8ba40587ef2475e49cc651898e0733fe3</originalsourceid><addsrcrecordid>eNqFkU2OEzEQhS0EEmHgCEheZhadsdv9Y68QimYYpEhsQGJnOe4yqcixG9sd4GqcDofMflalJ1W9elUfIe8523DGh7vjBsNkU5w3LWu7DeeyE90LsuJybJtBiO8vyYqpdmiGQbHX5E3OR8b4yNpxRf7eO4cWIRQKv0sytmAMNDrqvDnHEHGiNp7muIQpUww0_wIotICh6x2WQ7QmzUumHksGdNFjFetHEyzc0u1hCbf0jIYuvlrnGNA2wZQlGU8ngJnCUqButDRHf75k-L8rYwFq5jlFYw90bzJMtIY6VYUBqAeTAoYfb8krZ3yGd0_1hnx7uP-6fWx2Xz593n7cNbZVrDR9J5iQAL1RHKRVY6u6PVPK9J3rpbRybzrWyxFc2409dMraoedSSWCjEA7EDVlffWugnwvkok-YLXhvAsQla8F7MXA-DLK29tfWSiPnBE7PCU8m_dGc6QsrfdRPrPSFlb6yqnMfrnNQ7zgjJJ0vTCxMmOqD9BTxGYd_XTikUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153611668</pqid></control><display><type>article</type><title>Efficient extraction of flavonoid compounds in sweet tea (Lithocarpus litseifolius (Hance) Chun) via ultrasonic-natural deep eutectic solvent composite approach based on machine learning</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Haoxue ; Yang, Han ; Nie, Siming ; Han, Xu ; Chang, Yuanhang ; Xu, Jian ; Nie, Chengdong ; Fu, Yujie</creator><creatorcontrib>Wang, Haoxue ; Yang, Han ; Nie, Siming ; Han, Xu ; Chang, Yuanhang ; Xu, Jian ; Nie, Chengdong ; Fu, Yujie</creatorcontrib><description>In this study, different types of natural deep eutectic solvents (NADES) were used to extract flavonoids from sweet tea. A total of 7 flavonoids, primarily dihydrochalcones, were successfully extracted. Among the NADESs tested, a ternary deep eutectic solvent Bet-PG-Ur (betaine: propanediol: urea = 1: 2: 1, molar ratio) demonstrated the highest extraction efficiency. The chemical and morphological changes of both the NADES and extracted compounds were analyzed using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). To optimize the extraction process and evaluate the total flavonoid yield, response surface methodology (RSM), artificial neural network (ANN), and random forest (RF) techniques were employed. The NADES demonstrated consistent extraction performance even after three cycles of recovery using the SPE method. The results revealed that all three models successfully predicted the TFC in the green extraction ultrasonic process. The ANN model exhibited superior result consistency compared to the others, which can be attributed to the enhanced statistical parameters obtained. The highest total flavonoid content (TFC) of 167.561 mg/g was predicted by ANN and achieved under the following conditions: liquid/solid ratio of 19, water content of 50 %, temperature of 45 °C, and ultrasonic power of 400 W. [Display omitted] •A ternary DES-ultrasonic assisted was used for extraction of 7 flavonoids from sweet tea.•For the first time, machine learning was used to forecast the parameters for the TFC in sweet tea.•In terms of process modeling and prediction, ANN is better than RF and RSM.•The extraction efficiency of DES can reach 80% after 3 cycles of recovery by SPE.•Ultrasound-assisted extraction of 7 flavonoids from sweet tea using NADESs.</description><identifier>ISSN: 0926-6690</identifier><identifier>EISSN: 1872-633X</identifier><identifier>DOI: 10.1016/j.indcrop.2024.118434</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Artificial neural network ; betaine ; electron microscopy ; Flavonoid ; flavonoids ; Fourier transform infrared spectroscopy ; liquids ; Lithocarpus ; Natural deep eutectic solvents ; neural networks ; Random forest ; response surface methodology ; solvents ; Sweet tea ; tea ; temperature ; ultrasonics ; Ultrasound ; urea ; water content</subject><ispartof>Industrial crops and products, 2024-09, Vol.215, p.118434, Article 118434</ispartof><rights>2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c290t-543038ee5a91e8c97294b099a54f588c8ba40587ef2475e49cc651898e0733fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926669024004114$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wang, Haoxue</creatorcontrib><creatorcontrib>Yang, Han</creatorcontrib><creatorcontrib>Nie, Siming</creatorcontrib><creatorcontrib>Han, Xu</creatorcontrib><creatorcontrib>Chang, Yuanhang</creatorcontrib><creatorcontrib>Xu, Jian</creatorcontrib><creatorcontrib>Nie, Chengdong</creatorcontrib><creatorcontrib>Fu, Yujie</creatorcontrib><title>Efficient extraction of flavonoid compounds in sweet tea (Lithocarpus litseifolius (Hance) Chun) via ultrasonic-natural deep eutectic solvent composite approach based on machine learning</title><title>Industrial crops and products</title><description>In this study, different types of natural deep eutectic solvents (NADES) were used to extract flavonoids from sweet tea. A total of 7 flavonoids, primarily dihydrochalcones, were successfully extracted. Among the NADESs tested, a ternary deep eutectic solvent Bet-PG-Ur (betaine: propanediol: urea = 1: 2: 1, molar ratio) demonstrated the highest extraction efficiency. The chemical and morphological changes of both the NADES and extracted compounds were analyzed using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). To optimize the extraction process and evaluate the total flavonoid yield, response surface methodology (RSM), artificial neural network (ANN), and random forest (RF) techniques were employed. The NADES demonstrated consistent extraction performance even after three cycles of recovery using the SPE method. The results revealed that all three models successfully predicted the TFC in the green extraction ultrasonic process. The ANN model exhibited superior result consistency compared to the others, which can be attributed to the enhanced statistical parameters obtained. The highest total flavonoid content (TFC) of 167.561 mg/g was predicted by ANN and achieved under the following conditions: liquid/solid ratio of 19, water content of 50 %, temperature of 45 °C, and ultrasonic power of 400 W. [Display omitted] •A ternary DES-ultrasonic assisted was used for extraction of 7 flavonoids from sweet tea.•For the first time, machine learning was used to forecast the parameters for the TFC in sweet tea.•In terms of process modeling and prediction, ANN is better than RF and RSM.•The extraction efficiency of DES can reach 80% after 3 cycles of recovery by SPE.•Ultrasound-assisted extraction of 7 flavonoids from sweet tea using NADESs.</description><subject>Artificial neural network</subject><subject>betaine</subject><subject>electron microscopy</subject><subject>Flavonoid</subject><subject>flavonoids</subject><subject>Fourier transform infrared spectroscopy</subject><subject>liquids</subject><subject>Lithocarpus</subject><subject>Natural deep eutectic solvents</subject><subject>neural networks</subject><subject>Random forest</subject><subject>response surface methodology</subject><subject>solvents</subject><subject>Sweet tea</subject><subject>tea</subject><subject>temperature</subject><subject>ultrasonics</subject><subject>Ultrasound</subject><subject>urea</subject><subject>water content</subject><issn>0926-6690</issn><issn>1872-633X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU2OEzEQhS0EEmHgCEheZhadsdv9Y68QimYYpEhsQGJnOe4yqcixG9sd4GqcDofMflalJ1W9elUfIe8523DGh7vjBsNkU5w3LWu7DeeyE90LsuJybJtBiO8vyYqpdmiGQbHX5E3OR8b4yNpxRf7eO4cWIRQKv0sytmAMNDrqvDnHEHGiNp7muIQpUww0_wIotICh6x2WQ7QmzUumHksGdNFjFetHEyzc0u1hCbf0jIYuvlrnGNA2wZQlGU8ngJnCUqButDRHf75k-L8rYwFq5jlFYw90bzJMtIY6VYUBqAeTAoYfb8krZ3yGd0_1hnx7uP-6fWx2Xz593n7cNbZVrDR9J5iQAL1RHKRVY6u6PVPK9J3rpbRybzrWyxFc2409dMraoedSSWCjEA7EDVlffWugnwvkok-YLXhvAsQla8F7MXA-DLK29tfWSiPnBE7PCU8m_dGc6QsrfdRPrPSFlb6yqnMfrnNQ7zgjJJ0vTCxMmOqD9BTxGYd_XTikUg</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Wang, Haoxue</creator><creator>Yang, Han</creator><creator>Nie, Siming</creator><creator>Han, Xu</creator><creator>Chang, Yuanhang</creator><creator>Xu, Jian</creator><creator>Nie, Chengdong</creator><creator>Fu, Yujie</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240901</creationdate><title>Efficient extraction of flavonoid compounds in sweet tea (Lithocarpus litseifolius (Hance) Chun) via ultrasonic-natural deep eutectic solvent composite approach based on machine learning</title><author>Wang, Haoxue ; Yang, Han ; Nie, Siming ; Han, Xu ; Chang, Yuanhang ; Xu, Jian ; Nie, Chengdong ; Fu, Yujie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-543038ee5a91e8c97294b099a54f588c8ba40587ef2475e49cc651898e0733fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural network</topic><topic>betaine</topic><topic>electron microscopy</topic><topic>Flavonoid</topic><topic>flavonoids</topic><topic>Fourier transform infrared spectroscopy</topic><topic>liquids</topic><topic>Lithocarpus</topic><topic>Natural deep eutectic solvents</topic><topic>neural networks</topic><topic>Random forest</topic><topic>response surface methodology</topic><topic>solvents</topic><topic>Sweet tea</topic><topic>tea</topic><topic>temperature</topic><topic>ultrasonics</topic><topic>Ultrasound</topic><topic>urea</topic><topic>water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haoxue</creatorcontrib><creatorcontrib>Yang, Han</creatorcontrib><creatorcontrib>Nie, Siming</creatorcontrib><creatorcontrib>Han, Xu</creatorcontrib><creatorcontrib>Chang, Yuanhang</creatorcontrib><creatorcontrib>Xu, Jian</creatorcontrib><creatorcontrib>Nie, Chengdong</creatorcontrib><creatorcontrib>Fu, Yujie</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Industrial crops and products</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haoxue</au><au>Yang, Han</au><au>Nie, Siming</au><au>Han, Xu</au><au>Chang, Yuanhang</au><au>Xu, Jian</au><au>Nie, Chengdong</au><au>Fu, Yujie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient extraction of flavonoid compounds in sweet tea (Lithocarpus litseifolius (Hance) Chun) via ultrasonic-natural deep eutectic solvent composite approach based on machine learning</atitle><jtitle>Industrial crops and products</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>215</volume><spage>118434</spage><pages>118434-</pages><artnum>118434</artnum><issn>0926-6690</issn><eissn>1872-633X</eissn><abstract>In this study, different types of natural deep eutectic solvents (NADES) were used to extract flavonoids from sweet tea. A total of 7 flavonoids, primarily dihydrochalcones, were successfully extracted. Among the NADESs tested, a ternary deep eutectic solvent Bet-PG-Ur (betaine: propanediol: urea = 1: 2: 1, molar ratio) demonstrated the highest extraction efficiency. The chemical and morphological changes of both the NADES and extracted compounds were analyzed using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). To optimize the extraction process and evaluate the total flavonoid yield, response surface methodology (RSM), artificial neural network (ANN), and random forest (RF) techniques were employed. The NADES demonstrated consistent extraction performance even after three cycles of recovery using the SPE method. The results revealed that all three models successfully predicted the TFC in the green extraction ultrasonic process. The ANN model exhibited superior result consistency compared to the others, which can be attributed to the enhanced statistical parameters obtained. The highest total flavonoid content (TFC) of 167.561 mg/g was predicted by ANN and achieved under the following conditions: liquid/solid ratio of 19, water content of 50 %, temperature of 45 °C, and ultrasonic power of 400 W. [Display omitted] •A ternary DES-ultrasonic assisted was used for extraction of 7 flavonoids from sweet tea.•For the first time, machine learning was used to forecast the parameters for the TFC in sweet tea.•In terms of process modeling and prediction, ANN is better than RF and RSM.•The extraction efficiency of DES can reach 80% after 3 cycles of recovery by SPE.•Ultrasound-assisted extraction of 7 flavonoids from sweet tea using NADESs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.indcrop.2024.118434</doi></addata></record>
fulltext fulltext
identifier ISSN: 0926-6690
ispartof Industrial crops and products, 2024-09, Vol.215, p.118434, Article 118434
issn 0926-6690
1872-633X
language eng
recordid cdi_proquest_miscellaneous_3153611668
source Elsevier ScienceDirect Journals Complete
subjects Artificial neural network
betaine
electron microscopy
Flavonoid
flavonoids
Fourier transform infrared spectroscopy
liquids
Lithocarpus
Natural deep eutectic solvents
neural networks
Random forest
response surface methodology
solvents
Sweet tea
tea
temperature
ultrasonics
Ultrasound
urea
water content
title Efficient extraction of flavonoid compounds in sweet tea (Lithocarpus litseifolius (Hance) Chun) via ultrasonic-natural deep eutectic solvent composite approach based on machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A08%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20extraction%20of%20flavonoid%20compounds%20in%20sweet%20tea%20(Lithocarpus%20litseifolius%20(Hance)%20Chun)%20via%20ultrasonic-natural%20deep%20eutectic%20solvent%20composite%20approach%20based%20on%20machine%20learning&rft.jtitle=Industrial%20crops%20and%20products&rft.au=Wang,%20Haoxue&rft.date=2024-09-01&rft.volume=215&rft.spage=118434&rft.pages=118434-&rft.artnum=118434&rft.issn=0926-6690&rft.eissn=1872-633X&rft_id=info:doi/10.1016/j.indcrop.2024.118434&rft_dat=%3Cproquest_cross%3E3153611668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153611668&rft_id=info:pmid/&rft_els_id=S0926669024004114&rfr_iscdi=true