Optimization and mechanism analysis of photosynthetic EPA production in Nannochloropsis salina: Evaluating the effect of temperature and nitrogen concentrations

Microalgae, recognized as sustainable and eco-friendly photosynthetic microorganisms, play a pivotal role in converting CO2 into value-added products. Among these, Nannochloropsis salina (Microchloropsis salina) stands out, particularly for its ability to produce eicosapentaenoic acid (EPA), a cruci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry 2024-06, Vol.211, p.108729-108729, Article 108729
Hauptverfasser: Koh, Hyun Gi, Jeon, Seungjib, Kim, Minsik, Chang, Yong Keun, Park, Kyungmoon, Park, See-Hyoung, Kang, Nam Kyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108729
container_issue
container_start_page 108729
container_title Plant physiology and biochemistry
container_volume 211
creator Koh, Hyun Gi
Jeon, Seungjib
Kim, Minsik
Chang, Yong Keun
Park, Kyungmoon
Park, See-Hyoung
Kang, Nam Kyu
description Microalgae, recognized as sustainable and eco-friendly photosynthetic microorganisms, play a pivotal role in converting CO2 into value-added products. Among these, Nannochloropsis salina (Microchloropsis salina) stands out, particularly for its ability to produce eicosapentaenoic acid (EPA), a crucial omega-3 fatty acid with significant health benefits such as anti-inflammatory properties and cardiovascular health promotion. This study focused on optimizing the cultivation conditions of Nannochloropsis salina to maximize EPA production. We thoroughly investigated the effects of varying temperatures and nitrogen (NaNO3) concentrations on biomass, total lipid content, and EPA proportions. We successfully identified optimal conditions at an initial NaNO3 concentration of 1.28 g.L−1 and a temperature of 21 °C. This condition was further validated by response surface methodology, which resulted in the highest EPA productivity reported in batch systems (14.4 mg.L−1.day−1). Quantitative real-time PCR and transcriptomic analysis also demonstrated a positive correlation between specific gene expressions and enhanced EPA production. Through a comprehensive lipid analysis and photosynthetic pigment analysis, we deduced that the production of EPA in Nannochloropsis salina seemed to be produced by the remodeling of chloroplast membrane lipids. These findings provide crucial insights into how temperature and nutrient availability influence fatty acid composition in N. salina, offering valuable guidance for developing strategies to improve EPA production in various microalgae species. [Display omitted] •NaNO3 and temperature conditions were optimized for EPA production in N. salina.•Lipid and pigment analysis indicate EPA remodeling in chloroplast membranes.•A positive correlation was found between gene expression and EPA production.•Response surface methodology confirms ideal conditions for EPA synthesis.
doi_str_mv 10.1016/j.plaphy.2024.108729
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153609897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0981942824003978</els_id><sourcerecordid>3056668750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-4033fdc284af0d3989b189e8ebcf385cfcdaaab305fc1b9866ffeaa71de6fb63</originalsourceid><addsrcrecordid>eNqFkc1u3CAUhVHVqpkmfYOqYtmNp2BsjLuoFEXTHylqssgeYXyJGdngAo40eZo-aplx2mWyQqDvnHs5B6EPlGwpofzzfjuPah4O25KUVX4STdm-QhsqGlaUvCWv0Ya0ghZtVYoz9C7GPSGZbNhbdMZEU1e0aTboz82c7GQfVbLeYeV6PIEelLNxyjc1HqKN2Bs8Dz75eHBpgGQ13t1e4jn4ftEnnXX4l3LO62H0wc9HTVSjdeoL3j2occnu7h5nLQZjQKejY4JphqDSEuA019kU_D04rL3T4FI4rRQv0Bujxgjvn85zdPdtd3f1o7i--f7z6vK60KyqUlERxkyvS1EpQ3rWirajogUBnTZM1NroXinVMVIbTbtWcJ4XUaqhPXDTcXaOPq22-Ve_F4hJTjZqGEflwC9RMloznvNsm5dRUnPOc8Iko9WK6uBjDGDkHOykwkFSIo8tyr1cW5THFuXaYpZ9fJqwdBP0_0X_asvA1xWAnMiDhSCjtpBj623I8cre2-cn_AVAPrXY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056668750</pqid></control><display><type>article</type><title>Optimization and mechanism analysis of photosynthetic EPA production in Nannochloropsis salina: Evaluating the effect of temperature and nitrogen concentrations</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Koh, Hyun Gi ; Jeon, Seungjib ; Kim, Minsik ; Chang, Yong Keun ; Park, Kyungmoon ; Park, See-Hyoung ; Kang, Nam Kyu</creator><creatorcontrib>Koh, Hyun Gi ; Jeon, Seungjib ; Kim, Minsik ; Chang, Yong Keun ; Park, Kyungmoon ; Park, See-Hyoung ; Kang, Nam Kyu</creatorcontrib><description>Microalgae, recognized as sustainable and eco-friendly photosynthetic microorganisms, play a pivotal role in converting CO2 into value-added products. Among these, Nannochloropsis salina (Microchloropsis salina) stands out, particularly for its ability to produce eicosapentaenoic acid (EPA), a crucial omega-3 fatty acid with significant health benefits such as anti-inflammatory properties and cardiovascular health promotion. This study focused on optimizing the cultivation conditions of Nannochloropsis salina to maximize EPA production. We thoroughly investigated the effects of varying temperatures and nitrogen (NaNO3) concentrations on biomass, total lipid content, and EPA proportions. We successfully identified optimal conditions at an initial NaNO3 concentration of 1.28 g.L−1 and a temperature of 21 °C. This condition was further validated by response surface methodology, which resulted in the highest EPA productivity reported in batch systems (14.4 mg.L−1.day−1). Quantitative real-time PCR and transcriptomic analysis also demonstrated a positive correlation between specific gene expressions and enhanced EPA production. Through a comprehensive lipid analysis and photosynthetic pigment analysis, we deduced that the production of EPA in Nannochloropsis salina seemed to be produced by the remodeling of chloroplast membrane lipids. These findings provide crucial insights into how temperature and nutrient availability influence fatty acid composition in N. salina, offering valuable guidance for developing strategies to improve EPA production in various microalgae species. [Display omitted] •NaNO3 and temperature conditions were optimized for EPA production in N. salina.•Lipid and pigment analysis indicate EPA remodeling in chloroplast membranes.•A positive correlation was found between gene expression and EPA production.•Response surface methodology confirms ideal conditions for EPA synthesis.</description><identifier>ISSN: 0981-9428</identifier><identifier>EISSN: 1873-2690</identifier><identifier>DOI: 10.1016/j.plaphy.2024.108729</identifier><identifier>PMID: 38754177</identifier><language>eng</language><publisher>France: Elsevier Masson SAS</publisher><subject>Biomass ; carbon dioxide ; chloroplast membranes ; Culture optimization ; Eicosapentaenoic acid ; Eicosapentaenoic Acid - biosynthesis ; Eicosapentaenoic Acid - metabolism ; EPA ; fatty acid composition ; genes ; health promotion ; lipid content ; Microalgae ; Microalgae - metabolism ; Nannochloropsis ; Nannochloropsis salina ; nitrogen ; Nitrogen - metabolism ; nutrient availability ; Omega-3 ; omega-3 fatty acids ; Photosynthesis ; plant physiology ; quantitative polymerase chain reaction ; response surface methodology ; RSM ; species ; Stramenopiles - genetics ; Stramenopiles - metabolism ; Temperature ; transcriptomics ; value added</subject><ispartof>Plant physiology and biochemistry, 2024-06, Vol.211, p.108729-108729, Article 108729</ispartof><rights>2024 Elsevier Masson SAS</rights><rights>Copyright © 2024 Elsevier Masson SAS. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c344t-4033fdc284af0d3989b189e8ebcf385cfcdaaab305fc1b9866ffeaa71de6fb63</cites><orcidid>0000-0002-1348-1312 ; 0000-0003-0223-4882 ; 0000-0003-1095-840X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0981942824003978$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38754177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koh, Hyun Gi</creatorcontrib><creatorcontrib>Jeon, Seungjib</creatorcontrib><creatorcontrib>Kim, Minsik</creatorcontrib><creatorcontrib>Chang, Yong Keun</creatorcontrib><creatorcontrib>Park, Kyungmoon</creatorcontrib><creatorcontrib>Park, See-Hyoung</creatorcontrib><creatorcontrib>Kang, Nam Kyu</creatorcontrib><title>Optimization and mechanism analysis of photosynthetic EPA production in Nannochloropsis salina: Evaluating the effect of temperature and nitrogen concentrations</title><title>Plant physiology and biochemistry</title><addtitle>Plant Physiol Biochem</addtitle><description>Microalgae, recognized as sustainable and eco-friendly photosynthetic microorganisms, play a pivotal role in converting CO2 into value-added products. Among these, Nannochloropsis salina (Microchloropsis salina) stands out, particularly for its ability to produce eicosapentaenoic acid (EPA), a crucial omega-3 fatty acid with significant health benefits such as anti-inflammatory properties and cardiovascular health promotion. This study focused on optimizing the cultivation conditions of Nannochloropsis salina to maximize EPA production. We thoroughly investigated the effects of varying temperatures and nitrogen (NaNO3) concentrations on biomass, total lipid content, and EPA proportions. We successfully identified optimal conditions at an initial NaNO3 concentration of 1.28 g.L−1 and a temperature of 21 °C. This condition was further validated by response surface methodology, which resulted in the highest EPA productivity reported in batch systems (14.4 mg.L−1.day−1). Quantitative real-time PCR and transcriptomic analysis also demonstrated a positive correlation between specific gene expressions and enhanced EPA production. Through a comprehensive lipid analysis and photosynthetic pigment analysis, we deduced that the production of EPA in Nannochloropsis salina seemed to be produced by the remodeling of chloroplast membrane lipids. These findings provide crucial insights into how temperature and nutrient availability influence fatty acid composition in N. salina, offering valuable guidance for developing strategies to improve EPA production in various microalgae species. [Display omitted] •NaNO3 and temperature conditions were optimized for EPA production in N. salina.•Lipid and pigment analysis indicate EPA remodeling in chloroplast membranes.•A positive correlation was found between gene expression and EPA production.•Response surface methodology confirms ideal conditions for EPA synthesis.</description><subject>Biomass</subject><subject>carbon dioxide</subject><subject>chloroplast membranes</subject><subject>Culture optimization</subject><subject>Eicosapentaenoic acid</subject><subject>Eicosapentaenoic Acid - biosynthesis</subject><subject>Eicosapentaenoic Acid - metabolism</subject><subject>EPA</subject><subject>fatty acid composition</subject><subject>genes</subject><subject>health promotion</subject><subject>lipid content</subject><subject>Microalgae</subject><subject>Microalgae - metabolism</subject><subject>Nannochloropsis</subject><subject>Nannochloropsis salina</subject><subject>nitrogen</subject><subject>Nitrogen - metabolism</subject><subject>nutrient availability</subject><subject>Omega-3</subject><subject>omega-3 fatty acids</subject><subject>Photosynthesis</subject><subject>plant physiology</subject><subject>quantitative polymerase chain reaction</subject><subject>response surface methodology</subject><subject>RSM</subject><subject>species</subject><subject>Stramenopiles - genetics</subject><subject>Stramenopiles - metabolism</subject><subject>Temperature</subject><subject>transcriptomics</subject><subject>value added</subject><issn>0981-9428</issn><issn>1873-2690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u3CAUhVHVqpkmfYOqYtmNp2BsjLuoFEXTHylqssgeYXyJGdngAo40eZo-aplx2mWyQqDvnHs5B6EPlGwpofzzfjuPah4O25KUVX4STdm-QhsqGlaUvCWv0Ya0ghZtVYoz9C7GPSGZbNhbdMZEU1e0aTboz82c7GQfVbLeYeV6PIEelLNxyjc1HqKN2Bs8Dz75eHBpgGQ13t1e4jn4ftEnnXX4l3LO62H0wc9HTVSjdeoL3j2occnu7h5nLQZjQKejY4JphqDSEuA019kU_D04rL3T4FI4rRQv0Bujxgjvn85zdPdtd3f1o7i--f7z6vK60KyqUlERxkyvS1EpQ3rWirajogUBnTZM1NroXinVMVIbTbtWcJ4XUaqhPXDTcXaOPq22-Ve_F4hJTjZqGEflwC9RMloznvNsm5dRUnPOc8Iko9WK6uBjDGDkHOykwkFSIo8tyr1cW5THFuXaYpZ9fJqwdBP0_0X_asvA1xWAnMiDhSCjtpBj623I8cre2-cn_AVAPrXY</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Koh, Hyun Gi</creator><creator>Jeon, Seungjib</creator><creator>Kim, Minsik</creator><creator>Chang, Yong Keun</creator><creator>Park, Kyungmoon</creator><creator>Park, See-Hyoung</creator><creator>Kang, Nam Kyu</creator><general>Elsevier Masson SAS</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-1348-1312</orcidid><orcidid>https://orcid.org/0000-0003-0223-4882</orcidid><orcidid>https://orcid.org/0000-0003-1095-840X</orcidid></search><sort><creationdate>20240601</creationdate><title>Optimization and mechanism analysis of photosynthetic EPA production in Nannochloropsis salina: Evaluating the effect of temperature and nitrogen concentrations</title><author>Koh, Hyun Gi ; Jeon, Seungjib ; Kim, Minsik ; Chang, Yong Keun ; Park, Kyungmoon ; Park, See-Hyoung ; Kang, Nam Kyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-4033fdc284af0d3989b189e8ebcf385cfcdaaab305fc1b9866ffeaa71de6fb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomass</topic><topic>carbon dioxide</topic><topic>chloroplast membranes</topic><topic>Culture optimization</topic><topic>Eicosapentaenoic acid</topic><topic>Eicosapentaenoic Acid - biosynthesis</topic><topic>Eicosapentaenoic Acid - metabolism</topic><topic>EPA</topic><topic>fatty acid composition</topic><topic>genes</topic><topic>health promotion</topic><topic>lipid content</topic><topic>Microalgae</topic><topic>Microalgae - metabolism</topic><topic>Nannochloropsis</topic><topic>Nannochloropsis salina</topic><topic>nitrogen</topic><topic>Nitrogen - metabolism</topic><topic>nutrient availability</topic><topic>Omega-3</topic><topic>omega-3 fatty acids</topic><topic>Photosynthesis</topic><topic>plant physiology</topic><topic>quantitative polymerase chain reaction</topic><topic>response surface methodology</topic><topic>RSM</topic><topic>species</topic><topic>Stramenopiles - genetics</topic><topic>Stramenopiles - metabolism</topic><topic>Temperature</topic><topic>transcriptomics</topic><topic>value added</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koh, Hyun Gi</creatorcontrib><creatorcontrib>Jeon, Seungjib</creatorcontrib><creatorcontrib>Kim, Minsik</creatorcontrib><creatorcontrib>Chang, Yong Keun</creatorcontrib><creatorcontrib>Park, Kyungmoon</creatorcontrib><creatorcontrib>Park, See-Hyoung</creatorcontrib><creatorcontrib>Kang, Nam Kyu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Plant physiology and biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koh, Hyun Gi</au><au>Jeon, Seungjib</au><au>Kim, Minsik</au><au>Chang, Yong Keun</au><au>Park, Kyungmoon</au><au>Park, See-Hyoung</au><au>Kang, Nam Kyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization and mechanism analysis of photosynthetic EPA production in Nannochloropsis salina: Evaluating the effect of temperature and nitrogen concentrations</atitle><jtitle>Plant physiology and biochemistry</jtitle><addtitle>Plant Physiol Biochem</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>211</volume><spage>108729</spage><epage>108729</epage><pages>108729-108729</pages><artnum>108729</artnum><issn>0981-9428</issn><eissn>1873-2690</eissn><abstract>Microalgae, recognized as sustainable and eco-friendly photosynthetic microorganisms, play a pivotal role in converting CO2 into value-added products. Among these, Nannochloropsis salina (Microchloropsis salina) stands out, particularly for its ability to produce eicosapentaenoic acid (EPA), a crucial omega-3 fatty acid with significant health benefits such as anti-inflammatory properties and cardiovascular health promotion. This study focused on optimizing the cultivation conditions of Nannochloropsis salina to maximize EPA production. We thoroughly investigated the effects of varying temperatures and nitrogen (NaNO3) concentrations on biomass, total lipid content, and EPA proportions. We successfully identified optimal conditions at an initial NaNO3 concentration of 1.28 g.L−1 and a temperature of 21 °C. This condition was further validated by response surface methodology, which resulted in the highest EPA productivity reported in batch systems (14.4 mg.L−1.day−1). Quantitative real-time PCR and transcriptomic analysis also demonstrated a positive correlation between specific gene expressions and enhanced EPA production. Through a comprehensive lipid analysis and photosynthetic pigment analysis, we deduced that the production of EPA in Nannochloropsis salina seemed to be produced by the remodeling of chloroplast membrane lipids. These findings provide crucial insights into how temperature and nutrient availability influence fatty acid composition in N. salina, offering valuable guidance for developing strategies to improve EPA production in various microalgae species. [Display omitted] •NaNO3 and temperature conditions were optimized for EPA production in N. salina.•Lipid and pigment analysis indicate EPA remodeling in chloroplast membranes.•A positive correlation was found between gene expression and EPA production.•Response surface methodology confirms ideal conditions for EPA synthesis.</abstract><cop>France</cop><pub>Elsevier Masson SAS</pub><pmid>38754177</pmid><doi>10.1016/j.plaphy.2024.108729</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1348-1312</orcidid><orcidid>https://orcid.org/0000-0003-0223-4882</orcidid><orcidid>https://orcid.org/0000-0003-1095-840X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0981-9428
ispartof Plant physiology and biochemistry, 2024-06, Vol.211, p.108729-108729, Article 108729
issn 0981-9428
1873-2690
language eng
recordid cdi_proquest_miscellaneous_3153609897
source MEDLINE; Elsevier ScienceDirect Journals
subjects Biomass
carbon dioxide
chloroplast membranes
Culture optimization
Eicosapentaenoic acid
Eicosapentaenoic Acid - biosynthesis
Eicosapentaenoic Acid - metabolism
EPA
fatty acid composition
genes
health promotion
lipid content
Microalgae
Microalgae - metabolism
Nannochloropsis
Nannochloropsis salina
nitrogen
Nitrogen - metabolism
nutrient availability
Omega-3
omega-3 fatty acids
Photosynthesis
plant physiology
quantitative polymerase chain reaction
response surface methodology
RSM
species
Stramenopiles - genetics
Stramenopiles - metabolism
Temperature
transcriptomics
value added
title Optimization and mechanism analysis of photosynthetic EPA production in Nannochloropsis salina: Evaluating the effect of temperature and nitrogen concentrations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A35%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20and%20mechanism%20analysis%20of%20photosynthetic%20EPA%20production%20in%20Nannochloropsis%20salina:%20Evaluating%20the%20effect%20of%20temperature%20and%20nitrogen%20concentrations&rft.jtitle=Plant%20physiology%20and%20biochemistry&rft.au=Koh,%20Hyun%20Gi&rft.date=2024-06-01&rft.volume=211&rft.spage=108729&rft.epage=108729&rft.pages=108729-108729&rft.artnum=108729&rft.issn=0981-9428&rft.eissn=1873-2690&rft_id=info:doi/10.1016/j.plaphy.2024.108729&rft_dat=%3Cproquest_cross%3E3056668750%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056668750&rft_id=info:pmid/38754177&rft_els_id=S0981942824003978&rfr_iscdi=true