Sensing of gene expression in live cells using electrical impedance spectroscopy and DNA-functionalized gold nanoparticles

A novel electrical impedance spectroscopy-based method for non-destructive sensing of gene expression in living cells is presented. The approach used takes advantage of the robustness and responsiveness of electrical impedance spectroscopy and the highly specific and selective nature of DNA hybridiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2024-05, Vol.252, p.116041-116041, Article 116041
Hauptverfasser: Kadan-Jamal, Kian, Jog, Aakash, Sophocleous, Marios, Dotan, Tali, Frumin, Polina, Kuperberg Goshen, Tamar, Schuster, Silvia, Avni, Adi, Shacham-Diamand, Yosi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116041
container_issue
container_start_page 116041
container_title Biosensors & bioelectronics
container_volume 252
creator Kadan-Jamal, Kian
Jog, Aakash
Sophocleous, Marios
Dotan, Tali
Frumin, Polina
Kuperberg Goshen, Tamar
Schuster, Silvia
Avni, Adi
Shacham-Diamand, Yosi
description A novel electrical impedance spectroscopy-based method for non-destructive sensing of gene expression in living cells is presented. The approach used takes advantage of the robustness and responsiveness of electrical impedance spectroscopy and the highly specific and selective nature of DNA hybridization. The technique uses electrical impedance spectroscopy and gold nanoparticles functionalized with single-stranded DNA complementary to an mRNA of interest to provide reliable, real-time, and quantifiable data on gene expression in live cells. The system was validated by demonstrating specific detection of the uidA mRNA, which codes for the β-glucuronidase (GUS) enzyme, in Solanum lycopersicum MsK8 cells. Gold nanoparticles were functionalized with single-stranded DNA oligonucleotides consisting of either a sequence complementary to uidA mRNA or an arbitrary sequence. The DNA-functionalized gold nanoparticles were mixed with cell suspensions, allowing the gold nanoparticles to penetrate into the cells. The impedance spectra of suspensions of cells with gold nanoparticles inserted within them were then studied. In suspensions of uidA-expressing cells and gold nanoparticles functionalized with the complementary single-stranded DNA oligonucleotide, the impedance magnitude in the frequency range of interest was significantly higher (146 %) in comparison to all other controls. Due to its highly selective nature, the methodology has the potential to be used as a precision agricultural sensing system for accurate and real-time detection of markers of stress, viral infection, disease, and normal physiological activities.
doi_str_mv 10.1016/j.bios.2024.116041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153607913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566324000447</els_id><sourcerecordid>3153607913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-f4e5b151467c8a0446d635d17c047bdbe47799a2dbeb4cc62b6e568c60c878b83</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi1ERbeFF-CAfOSSZRw7diJxqVooSFU5AGfLsScrr7x2iJOq7dPjdAtHOHlkffNL83-EvGWwZcDkh_229ylva6jFljEJgr0gG9YqXomaNy_JBrpGVo2U_JSc5bwHAMU6eEVOeSuA1S1syON3jNnHHU0D3WFEivfjhDn7FKmPNPg7pBZDyHR5wjCgnSdvTaD-MKIz0SLN4_qZsk3jAzXR0avbi2pYop1LjAn-ER3dpeBoNDGNZpq9DZhfk5PBhIxvnt9z8vPzpx-XX6qbb9dfLy9uKssFzNUgsOlZw4RUtjUghHSSN44pC0L1rkehVNeZuky9sFbWvcRGtlaCbVXbt_ycvD_mjlP6tWCe9cHn9SYTMS1Zc9ZwCapj_L9o3XGlQHZSFbQ-orYcnicc9Dj5g5keNAO96tF7verRqx591FOW3j3nL_0B3d-VPz4K8PEIYCnkzuOks_VYOnZ-Kh1rl_y_8n8Dow6iiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937706967</pqid></control><display><type>article</type><title>Sensing of gene expression in live cells using electrical impedance spectroscopy and DNA-functionalized gold nanoparticles</title><source>Elsevier ScienceDirect Journals</source><creator>Kadan-Jamal, Kian ; Jog, Aakash ; Sophocleous, Marios ; Dotan, Tali ; Frumin, Polina ; Kuperberg Goshen, Tamar ; Schuster, Silvia ; Avni, Adi ; Shacham-Diamand, Yosi</creator><creatorcontrib>Kadan-Jamal, Kian ; Jog, Aakash ; Sophocleous, Marios ; Dotan, Tali ; Frumin, Polina ; Kuperberg Goshen, Tamar ; Schuster, Silvia ; Avni, Adi ; Shacham-Diamand, Yosi</creatorcontrib><description>A novel electrical impedance spectroscopy-based method for non-destructive sensing of gene expression in living cells is presented. The approach used takes advantage of the robustness and responsiveness of electrical impedance spectroscopy and the highly specific and selective nature of DNA hybridization. The technique uses electrical impedance spectroscopy and gold nanoparticles functionalized with single-stranded DNA complementary to an mRNA of interest to provide reliable, real-time, and quantifiable data on gene expression in live cells. The system was validated by demonstrating specific detection of the uidA mRNA, which codes for the β-glucuronidase (GUS) enzyme, in Solanum lycopersicum MsK8 cells. Gold nanoparticles were functionalized with single-stranded DNA oligonucleotides consisting of either a sequence complementary to uidA mRNA or an arbitrary sequence. The DNA-functionalized gold nanoparticles were mixed with cell suspensions, allowing the gold nanoparticles to penetrate into the cells. The impedance spectra of suspensions of cells with gold nanoparticles inserted within them were then studied. In suspensions of uidA-expressing cells and gold nanoparticles functionalized with the complementary single-stranded DNA oligonucleotide, the impedance magnitude in the frequency range of interest was significantly higher (146 %) in comparison to all other controls. Due to its highly selective nature, the methodology has the potential to be used as a precision agricultural sensing system for accurate and real-time detection of markers of stress, viral infection, disease, and normal physiological activities.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2024.116041</identifier><identifier>PMID: 38401280</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>biosensors ; dielectric spectroscopy ; electric impedance ; Electrical impedance spectroscopy (EIS) ; enzymes ; Functionalized nanoparticles ; Gene expression ; In-vivo sensing ; nanogold ; nucleic acid hybridization ; oligonucleotides ; Plant cells ; single-stranded DNA ; Solanum lycopersicum</subject><ispartof>Biosensors &amp; bioelectronics, 2024-05, Vol.252, p.116041-116041, Article 116041</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c340t-f4e5b151467c8a0446d635d17c047bdbe47799a2dbeb4cc62b6e568c60c878b83</cites><orcidid>0000-0003-2092-9768 ; 0000-0001-8991-480X ; 0000-0003-2033-3040 ; 0000-0002-2167-2784 ; 0000-0002-9173-8865 ; 0000-0002-9669-0581</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0956566324000447$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38401280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kadan-Jamal, Kian</creatorcontrib><creatorcontrib>Jog, Aakash</creatorcontrib><creatorcontrib>Sophocleous, Marios</creatorcontrib><creatorcontrib>Dotan, Tali</creatorcontrib><creatorcontrib>Frumin, Polina</creatorcontrib><creatorcontrib>Kuperberg Goshen, Tamar</creatorcontrib><creatorcontrib>Schuster, Silvia</creatorcontrib><creatorcontrib>Avni, Adi</creatorcontrib><creatorcontrib>Shacham-Diamand, Yosi</creatorcontrib><title>Sensing of gene expression in live cells using electrical impedance spectroscopy and DNA-functionalized gold nanoparticles</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>A novel electrical impedance spectroscopy-based method for non-destructive sensing of gene expression in living cells is presented. The approach used takes advantage of the robustness and responsiveness of electrical impedance spectroscopy and the highly specific and selective nature of DNA hybridization. The technique uses electrical impedance spectroscopy and gold nanoparticles functionalized with single-stranded DNA complementary to an mRNA of interest to provide reliable, real-time, and quantifiable data on gene expression in live cells. The system was validated by demonstrating specific detection of the uidA mRNA, which codes for the β-glucuronidase (GUS) enzyme, in Solanum lycopersicum MsK8 cells. Gold nanoparticles were functionalized with single-stranded DNA oligonucleotides consisting of either a sequence complementary to uidA mRNA or an arbitrary sequence. The DNA-functionalized gold nanoparticles were mixed with cell suspensions, allowing the gold nanoparticles to penetrate into the cells. The impedance spectra of suspensions of cells with gold nanoparticles inserted within them were then studied. In suspensions of uidA-expressing cells and gold nanoparticles functionalized with the complementary single-stranded DNA oligonucleotide, the impedance magnitude in the frequency range of interest was significantly higher (146 %) in comparison to all other controls. Due to its highly selective nature, the methodology has the potential to be used as a precision agricultural sensing system for accurate and real-time detection of markers of stress, viral infection, disease, and normal physiological activities.</description><subject>biosensors</subject><subject>dielectric spectroscopy</subject><subject>electric impedance</subject><subject>Electrical impedance spectroscopy (EIS)</subject><subject>enzymes</subject><subject>Functionalized nanoparticles</subject><subject>Gene expression</subject><subject>In-vivo sensing</subject><subject>nanogold</subject><subject>nucleic acid hybridization</subject><subject>oligonucleotides</subject><subject>Plant cells</subject><subject>single-stranded DNA</subject><subject>Solanum lycopersicum</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi1ERbeFF-CAfOSSZRw7diJxqVooSFU5AGfLsScrr7x2iJOq7dPjdAtHOHlkffNL83-EvGWwZcDkh_229ylva6jFljEJgr0gG9YqXomaNy_JBrpGVo2U_JSc5bwHAMU6eEVOeSuA1S1syON3jNnHHU0D3WFEivfjhDn7FKmPNPg7pBZDyHR5wjCgnSdvTaD-MKIz0SLN4_qZsk3jAzXR0avbi2pYop1LjAn-ER3dpeBoNDGNZpq9DZhfk5PBhIxvnt9z8vPzpx-XX6qbb9dfLy9uKssFzNUgsOlZw4RUtjUghHSSN44pC0L1rkehVNeZuky9sFbWvcRGtlaCbVXbt_ycvD_mjlP6tWCe9cHn9SYTMS1Zc9ZwCapj_L9o3XGlQHZSFbQ-orYcnicc9Dj5g5keNAO96tF7verRqx591FOW3j3nL_0B3d-VPz4K8PEIYCnkzuOks_VYOnZ-Kh1rl_y_8n8Dow6iiQ</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Kadan-Jamal, Kian</creator><creator>Jog, Aakash</creator><creator>Sophocleous, Marios</creator><creator>Dotan, Tali</creator><creator>Frumin, Polina</creator><creator>Kuperberg Goshen, Tamar</creator><creator>Schuster, Silvia</creator><creator>Avni, Adi</creator><creator>Shacham-Diamand, Yosi</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-2092-9768</orcidid><orcidid>https://orcid.org/0000-0001-8991-480X</orcidid><orcidid>https://orcid.org/0000-0003-2033-3040</orcidid><orcidid>https://orcid.org/0000-0002-2167-2784</orcidid><orcidid>https://orcid.org/0000-0002-9173-8865</orcidid><orcidid>https://orcid.org/0000-0002-9669-0581</orcidid></search><sort><creationdate>20240515</creationdate><title>Sensing of gene expression in live cells using electrical impedance spectroscopy and DNA-functionalized gold nanoparticles</title><author>Kadan-Jamal, Kian ; Jog, Aakash ; Sophocleous, Marios ; Dotan, Tali ; Frumin, Polina ; Kuperberg Goshen, Tamar ; Schuster, Silvia ; Avni, Adi ; Shacham-Diamand, Yosi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-f4e5b151467c8a0446d635d17c047bdbe47799a2dbeb4cc62b6e568c60c878b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biosensors</topic><topic>dielectric spectroscopy</topic><topic>electric impedance</topic><topic>Electrical impedance spectroscopy (EIS)</topic><topic>enzymes</topic><topic>Functionalized nanoparticles</topic><topic>Gene expression</topic><topic>In-vivo sensing</topic><topic>nanogold</topic><topic>nucleic acid hybridization</topic><topic>oligonucleotides</topic><topic>Plant cells</topic><topic>single-stranded DNA</topic><topic>Solanum lycopersicum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadan-Jamal, Kian</creatorcontrib><creatorcontrib>Jog, Aakash</creatorcontrib><creatorcontrib>Sophocleous, Marios</creatorcontrib><creatorcontrib>Dotan, Tali</creatorcontrib><creatorcontrib>Frumin, Polina</creatorcontrib><creatorcontrib>Kuperberg Goshen, Tamar</creatorcontrib><creatorcontrib>Schuster, Silvia</creatorcontrib><creatorcontrib>Avni, Adi</creatorcontrib><creatorcontrib>Shacham-Diamand, Yosi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadan-Jamal, Kian</au><au>Jog, Aakash</au><au>Sophocleous, Marios</au><au>Dotan, Tali</au><au>Frumin, Polina</au><au>Kuperberg Goshen, Tamar</au><au>Schuster, Silvia</au><au>Avni, Adi</au><au>Shacham-Diamand, Yosi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensing of gene expression in live cells using electrical impedance spectroscopy and DNA-functionalized gold nanoparticles</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2024-05-15</date><risdate>2024</risdate><volume>252</volume><spage>116041</spage><epage>116041</epage><pages>116041-116041</pages><artnum>116041</artnum><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>A novel electrical impedance spectroscopy-based method for non-destructive sensing of gene expression in living cells is presented. The approach used takes advantage of the robustness and responsiveness of electrical impedance spectroscopy and the highly specific and selective nature of DNA hybridization. The technique uses electrical impedance spectroscopy and gold nanoparticles functionalized with single-stranded DNA complementary to an mRNA of interest to provide reliable, real-time, and quantifiable data on gene expression in live cells. The system was validated by demonstrating specific detection of the uidA mRNA, which codes for the β-glucuronidase (GUS) enzyme, in Solanum lycopersicum MsK8 cells. Gold nanoparticles were functionalized with single-stranded DNA oligonucleotides consisting of either a sequence complementary to uidA mRNA or an arbitrary sequence. The DNA-functionalized gold nanoparticles were mixed with cell suspensions, allowing the gold nanoparticles to penetrate into the cells. The impedance spectra of suspensions of cells with gold nanoparticles inserted within them were then studied. In suspensions of uidA-expressing cells and gold nanoparticles functionalized with the complementary single-stranded DNA oligonucleotide, the impedance magnitude in the frequency range of interest was significantly higher (146 %) in comparison to all other controls. Due to its highly selective nature, the methodology has the potential to be used as a precision agricultural sensing system for accurate and real-time detection of markers of stress, viral infection, disease, and normal physiological activities.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>38401280</pmid><doi>10.1016/j.bios.2024.116041</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2092-9768</orcidid><orcidid>https://orcid.org/0000-0001-8991-480X</orcidid><orcidid>https://orcid.org/0000-0003-2033-3040</orcidid><orcidid>https://orcid.org/0000-0002-2167-2784</orcidid><orcidid>https://orcid.org/0000-0002-9173-8865</orcidid><orcidid>https://orcid.org/0000-0002-9669-0581</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2024-05, Vol.252, p.116041-116041, Article 116041
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_3153607913
source Elsevier ScienceDirect Journals
subjects biosensors
dielectric spectroscopy
electric impedance
Electrical impedance spectroscopy (EIS)
enzymes
Functionalized nanoparticles
Gene expression
In-vivo sensing
nanogold
nucleic acid hybridization
oligonucleotides
Plant cells
single-stranded DNA
Solanum lycopersicum
title Sensing of gene expression in live cells using electrical impedance spectroscopy and DNA-functionalized gold nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A38%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensing%20of%20gene%20expression%20in%20live%20cells%20using%20electrical%20impedance%20spectroscopy%20and%20DNA-functionalized%20gold%20nanoparticles&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Kadan-Jamal,%20Kian&rft.date=2024-05-15&rft.volume=252&rft.spage=116041&rft.epage=116041&rft.pages=116041-116041&rft.artnum=116041&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2024.116041&rft_dat=%3Cproquest_cross%3E3153607913%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937706967&rft_id=info:pmid/38401280&rft_els_id=S0956566324000447&rfr_iscdi=true