Efficient Bifunctional NiFe-LDH@Co9S8 Nanoflower Electrocatalysts Anchored with Pt Nanocrystal for Flexible Quasi-solid Rechargeable Zinc Air Battery

Efficient and affordable electrocatalysts are a crucial part of rechargeable zinc air batteries (ZAB) to address the problems caused by the sluggish activity of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on the cathode. Anchoring noble metals on transition-metal-based su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2024-06, Vol.38 (11), p.10264-10274
Hauptverfasser: Chen, Jiongyu, Liu, Zhi, Liu, Yuchen, Cheng, Zhen, Zhang, Jingze, Zhang, Qinghong, Li, Yaogang, Hou, Chengyi, Li, Kerui, Wang, Hongzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10274
container_issue 11
container_start_page 10264
container_title Energy & fuels
container_volume 38
creator Chen, Jiongyu
Liu, Zhi
Liu, Yuchen
Cheng, Zhen
Zhang, Jingze
Zhang, Qinghong
Li, Yaogang
Hou, Chengyi
Li, Kerui
Wang, Hongzhi
description Efficient and affordable electrocatalysts are a crucial part of rechargeable zinc air batteries (ZAB) to address the problems caused by the sluggish activity of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on the cathode. Anchoring noble metals on transition-metal-based substances is a promising strategy to reinforce electrochemical activity and reduce the cost. Herein, we have developed a subsequent spontaneous-redox strategy to load Pt nanoparticles with 3.75% containing NiFe-LDH nanoflakes to boost the ORR activity. After that, NiFe-LDH@ Co9S8 is constructed as a rational design for bifunction catalysis. In the ORR process, the half-wave potential of the obtained catalyst, Pt-anchored NiFe-LDH@Co9S8, is 0.83 V vs RHE, showing better catalytic activity than Pt/C. In the OER process, the obtained catalyst exhibits a low overpotential of 280 mV, which is superior to that of RuO2. Notably, aqueous ZAB and quasi-solid-state ZAB achieve peak power densities of 164.3 and 78.4 mW cm–2, respectively. Furthermore, quasi-solid-state ZAB exhibits a long cycle lifespan for 240 cycles in 80 h, and a remarkable stability after bending for 50 cycles. This work paves the way for the design of the NiFe-LDH nanostructure by vacancy engineering.
doi_str_mv 10.1021/acs.energyfuels.4c00988
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153605708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153605708</sourcerecordid><originalsourceid>FETCH-LOGICAL-a232t-1bb27e00df419a8c9bed0c7355bb8ed686fc4cbc64b90e3fd74cf755066cf8993</originalsourceid><addsrcrecordid>eNpNkc1O3DAUhS1EJQbaZ6iXbDLcxHHi7BiGmQ7SCPq76SZybq4ZIzcutiOYB-n7NgMsWF3pnk9ncT7GPucwz6HILzTGOQ0U7vdmJBfnJQI0Sh2xWS4LyCQUzTGbgVJ1BlVRnrDTGB8AoBJKzti_lTEWLQ2JX1kzDpisH7Tjt3ZN2fZ6c7n0zQ_Fb_XgjfNPFPjKEabgUSft9jFFvhhw5wP1_MmmHf-aXmAMUzb1GB_42tGz7Rzxb6OONove2Z5_J9zpcE_6EPy2A_KFDfxKp0Rh_5F9MNpF-vR2z9iv9erncpNt777cLBfbTBeiSFnedUVNAL0p80YrbDrqAWshZdcp6itVGSyxw6rsGiBh-rpEU0sJVYVGNY04Y-evvX-DfxwppvaPjUjO6YH8GFuRS1GBrEFNqHhFp73bBz-GaaXY5tAeJLSH5zsJ7ZsE8R8sxIKs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153605708</pqid></control><display><type>article</type><title>Efficient Bifunctional NiFe-LDH@Co9S8 Nanoflower Electrocatalysts Anchored with Pt Nanocrystal for Flexible Quasi-solid Rechargeable Zinc Air Battery</title><source>ACS Publications</source><creator>Chen, Jiongyu ; Liu, Zhi ; Liu, Yuchen ; Cheng, Zhen ; Zhang, Jingze ; Zhang, Qinghong ; Li, Yaogang ; Hou, Chengyi ; Li, Kerui ; Wang, Hongzhi</creator><creatorcontrib>Chen, Jiongyu ; Liu, Zhi ; Liu, Yuchen ; Cheng, Zhen ; Zhang, Jingze ; Zhang, Qinghong ; Li, Yaogang ; Hou, Chengyi ; Li, Kerui ; Wang, Hongzhi</creatorcontrib><description>Efficient and affordable electrocatalysts are a crucial part of rechargeable zinc air batteries (ZAB) to address the problems caused by the sluggish activity of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on the cathode. Anchoring noble metals on transition-metal-based substances is a promising strategy to reinforce electrochemical activity and reduce the cost. Herein, we have developed a subsequent spontaneous-redox strategy to load Pt nanoparticles with 3.75% containing NiFe-LDH nanoflakes to boost the ORR activity. After that, NiFe-LDH@ Co9S8 is constructed as a rational design for bifunction catalysis. In the ORR process, the half-wave potential of the obtained catalyst, Pt-anchored NiFe-LDH@Co9S8, is 0.83 V vs RHE, showing better catalytic activity than Pt/C. In the OER process, the obtained catalyst exhibits a low overpotential of 280 mV, which is superior to that of RuO2. Notably, aqueous ZAB and quasi-solid-state ZAB achieve peak power densities of 164.3 and 78.4 mW cm–2, respectively. Furthermore, quasi-solid-state ZAB exhibits a long cycle lifespan for 240 cycles in 80 h, and a remarkable stability after bending for 50 cycles. This work paves the way for the design of the NiFe-LDH nanostructure by vacancy engineering.</description><identifier>ISSN: 0887-0624</identifier><identifier>ISSN: 1520-5029</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.4c00988</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>air ; batteries ; Batteries and Energy Storage ; catalysts ; catalytic activity ; cathodes ; electrochemistry ; energy ; longevity ; nanocrystals ; nanoflowers ; nanoparticles ; oxygen production ; zinc</subject><ispartof>Energy &amp; fuels, 2024-06, Vol.38 (11), p.10264-10274</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4142-2982 ; 0000-0003-0933-8932 ; 0000-0002-5469-2327 ; 0000-0002-4373-7665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.4c00988$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.4c00988$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,27063,27911,27912,56725,56775</link.rule.ids></links><search><creatorcontrib>Chen, Jiongyu</creatorcontrib><creatorcontrib>Liu, Zhi</creatorcontrib><creatorcontrib>Liu, Yuchen</creatorcontrib><creatorcontrib>Cheng, Zhen</creatorcontrib><creatorcontrib>Zhang, Jingze</creatorcontrib><creatorcontrib>Zhang, Qinghong</creatorcontrib><creatorcontrib>Li, Yaogang</creatorcontrib><creatorcontrib>Hou, Chengyi</creatorcontrib><creatorcontrib>Li, Kerui</creatorcontrib><creatorcontrib>Wang, Hongzhi</creatorcontrib><title>Efficient Bifunctional NiFe-LDH@Co9S8 Nanoflower Electrocatalysts Anchored with Pt Nanocrystal for Flexible Quasi-solid Rechargeable Zinc Air Battery</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>Efficient and affordable electrocatalysts are a crucial part of rechargeable zinc air batteries (ZAB) to address the problems caused by the sluggish activity of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on the cathode. Anchoring noble metals on transition-metal-based substances is a promising strategy to reinforce electrochemical activity and reduce the cost. Herein, we have developed a subsequent spontaneous-redox strategy to load Pt nanoparticles with 3.75% containing NiFe-LDH nanoflakes to boost the ORR activity. After that, NiFe-LDH@ Co9S8 is constructed as a rational design for bifunction catalysis. In the ORR process, the half-wave potential of the obtained catalyst, Pt-anchored NiFe-LDH@Co9S8, is 0.83 V vs RHE, showing better catalytic activity than Pt/C. In the OER process, the obtained catalyst exhibits a low overpotential of 280 mV, which is superior to that of RuO2. Notably, aqueous ZAB and quasi-solid-state ZAB achieve peak power densities of 164.3 and 78.4 mW cm–2, respectively. Furthermore, quasi-solid-state ZAB exhibits a long cycle lifespan for 240 cycles in 80 h, and a remarkable stability after bending for 50 cycles. This work paves the way for the design of the NiFe-LDH nanostructure by vacancy engineering.</description><subject>air</subject><subject>batteries</subject><subject>Batteries and Energy Storage</subject><subject>catalysts</subject><subject>catalytic activity</subject><subject>cathodes</subject><subject>electrochemistry</subject><subject>energy</subject><subject>longevity</subject><subject>nanocrystals</subject><subject>nanoflowers</subject><subject>nanoparticles</subject><subject>oxygen production</subject><subject>zinc</subject><issn>0887-0624</issn><issn>1520-5029</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkc1O3DAUhS1EJQbaZ6iXbDLcxHHi7BiGmQ7SCPq76SZybq4ZIzcutiOYB-n7NgMsWF3pnk9ncT7GPucwz6HILzTGOQ0U7vdmJBfnJQI0Sh2xWS4LyCQUzTGbgVJ1BlVRnrDTGB8AoBJKzti_lTEWLQ2JX1kzDpisH7Tjt3ZN2fZ6c7n0zQ_Fb_XgjfNPFPjKEabgUSft9jFFvhhw5wP1_MmmHf-aXmAMUzb1GB_42tGz7Rzxb6OONove2Z5_J9zpcE_6EPy2A_KFDfxKp0Rh_5F9MNpF-vR2z9iv9erncpNt777cLBfbTBeiSFnedUVNAL0p80YrbDrqAWshZdcp6itVGSyxw6rsGiBh-rpEU0sJVYVGNY04Y-evvX-DfxwppvaPjUjO6YH8GFuRS1GBrEFNqHhFp73bBz-GaaXY5tAeJLSH5zsJ7ZsE8R8sxIKs</recordid><startdate>20240606</startdate><enddate>20240606</enddate><creator>Chen, Jiongyu</creator><creator>Liu, Zhi</creator><creator>Liu, Yuchen</creator><creator>Cheng, Zhen</creator><creator>Zhang, Jingze</creator><creator>Zhang, Qinghong</creator><creator>Li, Yaogang</creator><creator>Hou, Chengyi</creator><creator>Li, Kerui</creator><creator>Wang, Hongzhi</creator><general>American Chemical Society</general><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-4142-2982</orcidid><orcidid>https://orcid.org/0000-0003-0933-8932</orcidid><orcidid>https://orcid.org/0000-0002-5469-2327</orcidid><orcidid>https://orcid.org/0000-0002-4373-7665</orcidid></search><sort><creationdate>20240606</creationdate><title>Efficient Bifunctional NiFe-LDH@Co9S8 Nanoflower Electrocatalysts Anchored with Pt Nanocrystal for Flexible Quasi-solid Rechargeable Zinc Air Battery</title><author>Chen, Jiongyu ; Liu, Zhi ; Liu, Yuchen ; Cheng, Zhen ; Zhang, Jingze ; Zhang, Qinghong ; Li, Yaogang ; Hou, Chengyi ; Li, Kerui ; Wang, Hongzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a232t-1bb27e00df419a8c9bed0c7355bb8ed686fc4cbc64b90e3fd74cf755066cf8993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>air</topic><topic>batteries</topic><topic>Batteries and Energy Storage</topic><topic>catalysts</topic><topic>catalytic activity</topic><topic>cathodes</topic><topic>electrochemistry</topic><topic>energy</topic><topic>longevity</topic><topic>nanocrystals</topic><topic>nanoflowers</topic><topic>nanoparticles</topic><topic>oxygen production</topic><topic>zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jiongyu</creatorcontrib><creatorcontrib>Liu, Zhi</creatorcontrib><creatorcontrib>Liu, Yuchen</creatorcontrib><creatorcontrib>Cheng, Zhen</creatorcontrib><creatorcontrib>Zhang, Jingze</creatorcontrib><creatorcontrib>Zhang, Qinghong</creatorcontrib><creatorcontrib>Li, Yaogang</creatorcontrib><creatorcontrib>Hou, Chengyi</creatorcontrib><creatorcontrib>Li, Kerui</creatorcontrib><creatorcontrib>Wang, Hongzhi</creatorcontrib><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jiongyu</au><au>Liu, Zhi</au><au>Liu, Yuchen</au><au>Cheng, Zhen</au><au>Zhang, Jingze</au><au>Zhang, Qinghong</au><au>Li, Yaogang</au><au>Hou, Chengyi</au><au>Li, Kerui</au><au>Wang, Hongzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Bifunctional NiFe-LDH@Co9S8 Nanoflower Electrocatalysts Anchored with Pt Nanocrystal for Flexible Quasi-solid Rechargeable Zinc Air Battery</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2024-06-06</date><risdate>2024</risdate><volume>38</volume><issue>11</issue><spage>10264</spage><epage>10274</epage><pages>10264-10274</pages><issn>0887-0624</issn><issn>1520-5029</issn><eissn>1520-5029</eissn><abstract>Efficient and affordable electrocatalysts are a crucial part of rechargeable zinc air batteries (ZAB) to address the problems caused by the sluggish activity of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on the cathode. Anchoring noble metals on transition-metal-based substances is a promising strategy to reinforce electrochemical activity and reduce the cost. Herein, we have developed a subsequent spontaneous-redox strategy to load Pt nanoparticles with 3.75% containing NiFe-LDH nanoflakes to boost the ORR activity. After that, NiFe-LDH@ Co9S8 is constructed as a rational design for bifunction catalysis. In the ORR process, the half-wave potential of the obtained catalyst, Pt-anchored NiFe-LDH@Co9S8, is 0.83 V vs RHE, showing better catalytic activity than Pt/C. In the OER process, the obtained catalyst exhibits a low overpotential of 280 mV, which is superior to that of RuO2. Notably, aqueous ZAB and quasi-solid-state ZAB achieve peak power densities of 164.3 and 78.4 mW cm–2, respectively. Furthermore, quasi-solid-state ZAB exhibits a long cycle lifespan for 240 cycles in 80 h, and a remarkable stability after bending for 50 cycles. This work paves the way for the design of the NiFe-LDH nanostructure by vacancy engineering.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.4c00988</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4142-2982</orcidid><orcidid>https://orcid.org/0000-0003-0933-8932</orcidid><orcidid>https://orcid.org/0000-0002-5469-2327</orcidid><orcidid>https://orcid.org/0000-0002-4373-7665</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2024-06, Vol.38 (11), p.10264-10274
issn 0887-0624
1520-5029
1520-5029
language eng
recordid cdi_proquest_miscellaneous_3153605708
source ACS Publications
subjects air
batteries
Batteries and Energy Storage
catalysts
catalytic activity
cathodes
electrochemistry
energy
longevity
nanocrystals
nanoflowers
nanoparticles
oxygen production
zinc
title Efficient Bifunctional NiFe-LDH@Co9S8 Nanoflower Electrocatalysts Anchored with Pt Nanocrystal for Flexible Quasi-solid Rechargeable Zinc Air Battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A44%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Bifunctional%20NiFe-LDH@Co9S8%20Nanoflower%20Electrocatalysts%20Anchored%20with%20Pt%20Nanocrystal%20for%20Flexible%20Quasi-solid%20Rechargeable%20Zinc%20Air%20Battery&rft.jtitle=Energy%20&%20fuels&rft.au=Chen,%20Jiongyu&rft.date=2024-06-06&rft.volume=38&rft.issue=11&rft.spage=10264&rft.epage=10274&rft.pages=10264-10274&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.4c00988&rft_dat=%3Cproquest_acs_j%3E3153605708%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153605708&rft_id=info:pmid/&rfr_iscdi=true