Polymerization-induced assembly-etching engineering to hollow Co@N-doped carbon microcages for superior electromagnetic wave absorption
Hollow engineering is an effective approach to optimize impedance matching and modify magnetic-dielectric synergy for enhanced wave absorption capability, but the composition and microstructure manipulation of metal-organic frameworks (MOFs)-derived absorbers remains a challenge. Herein, a novel and...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2023-11, Vol.215, p.118506, Article 118506 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 118506 |
container_title | Carbon (New York) |
container_volume | 215 |
creator | Ban, Qingfu Li, Luwei Liu, Huimin Zhou, Dong Zheng, Yaochen Qin, Yusheng Xing, Ruizhe Kong, Jie |
description | Hollow engineering is an effective approach to optimize impedance matching and modify magnetic-dielectric synergy for enhanced wave absorption capability, but the composition and microstructure manipulation of metal-organic frameworks (MOFs)-derived absorbers remains a challenge. Herein, a novel and facile polymerization-induced assembly-etching strategy is proposed for the manufacture of wrinkled zeolitic imidazolate framework-67@polypyrrole (ZIF-67@PPy) microcages using ammonium persulfate catalyzed pyrrole polymerization and concomitant acid etching. Then, hollow cobalt@N-doped carbon microcages (Co@NCMs) with distorted carbon shells, rich core-shell heterojunctions, highly dispersive Co nanoparticles, and abundant heterogeneous interfaces are produced via high-temperature pyrolysis process, which eliminates the need for additional templates and etching agents. Moreover, the hollow microcage structure with interior cavities and mesopores provides superior impedance matching and lightweight characteristics to the absorbers. Therefore, the hollow absorbers demonstrate a minimum reflection loss of −50.4 dB and an effective absorption bandwidth (EAB) of 3.85 GHz at 2.7 mm with a 10 wt% filler loading. In general, the polymerization-indued assembly-etching strategy inspires the hollow engineering of MOF derivatives, and facilitates the development of superior electromagnetic wave absorption (EMA) materials.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2023.118506 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153603777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622323007510</els_id><sourcerecordid>3153603777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-1827517c81d41d125eca4cb8d1817cefbc42d835b701b30dccdad1e9f151d0f3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAxZesknxxEnjbhCo4k9CwKJ7y7EnravEDnYKKhfg2rgKa1YzY7034_cRcglsBgzm19uZVqH2bpaznM8ARMnmR2QCouIZFws4JhPGmMjmec5PyVmM2zQWAooJ-Xn37b7DYL_VYL3LrDM7jYaqGLGr232Gg95Yt6bo1tZhEqZ-8HTj29Z_0aW_fc2M75Nj_ALtrA5eqzVG2vhA465PntRgi3oIvlNrh4PV9Et9IlV19KE_HD4nJ41qI1781SlZPdyvlk_Zy9vj8_LuJdOcL4YMRF6VUGkBpgADeYlaFboWBkR6xabWRW4EL-uKQc2Z0dooA7hooATDGj4lV-PaPviPHcZBdjZqbFvl0O-i5FDyOeNVVSVpMUpTnhgDNrIPtlNhL4HJA3a5lWNmecAuR-zJdjPaMKX4tBhk1BZdYmpDIiCNt_8v-AWTM5Gd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153603777</pqid></control><display><type>article</type><title>Polymerization-induced assembly-etching engineering to hollow Co@N-doped carbon microcages for superior electromagnetic wave absorption</title><source>Elsevier ScienceDirect Journals</source><creator>Ban, Qingfu ; Li, Luwei ; Liu, Huimin ; Zhou, Dong ; Zheng, Yaochen ; Qin, Yusheng ; Xing, Ruizhe ; Kong, Jie</creator><creatorcontrib>Ban, Qingfu ; Li, Luwei ; Liu, Huimin ; Zhou, Dong ; Zheng, Yaochen ; Qin, Yusheng ; Xing, Ruizhe ; Kong, Jie</creatorcontrib><description>Hollow engineering is an effective approach to optimize impedance matching and modify magnetic-dielectric synergy for enhanced wave absorption capability, but the composition and microstructure manipulation of metal-organic frameworks (MOFs)-derived absorbers remains a challenge. Herein, a novel and facile polymerization-induced assembly-etching strategy is proposed for the manufacture of wrinkled zeolitic imidazolate framework-67@polypyrrole (ZIF-67@PPy) microcages using ammonium persulfate catalyzed pyrrole polymerization and concomitant acid etching. Then, hollow cobalt@N-doped carbon microcages (Co@NCMs) with distorted carbon shells, rich core-shell heterojunctions, highly dispersive Co nanoparticles, and abundant heterogeneous interfaces are produced via high-temperature pyrolysis process, which eliminates the need for additional templates and etching agents. Moreover, the hollow microcage structure with interior cavities and mesopores provides superior impedance matching and lightweight characteristics to the absorbers. Therefore, the hollow absorbers demonstrate a minimum reflection loss of −50.4 dB and an effective absorption bandwidth (EAB) of 3.85 GHz at 2.7 mm with a 10 wt% filler loading. In general, the polymerization-indued assembly-etching strategy inspires the hollow engineering of MOF derivatives, and facilitates the development of superior electromagnetic wave absorption (EMA) materials.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2023.118506</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>absorption ; ammonium persulfate ; carbon ; Carbon microcage ; electromagnetic radiation ; Electromagnetic wave absorption ; Hollow engineering ; Magnetic-dielectric synergy ; manufacturing ; Metal-organic framework ; microstructure ; nanoparticles ; polymerization ; pyrolysis ; pyrroles</subject><ispartof>Carbon (New York), 2023-11, Vol.215, p.118506, Article 118506</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-1827517c81d41d125eca4cb8d1817cefbc42d835b701b30dccdad1e9f151d0f3</citedby><cites>FETCH-LOGICAL-c339t-1827517c81d41d125eca4cb8d1817cefbc42d835b701b30dccdad1e9f151d0f3</cites><orcidid>0000-0001-5178-5758 ; 0000-0002-3651-376X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622323007510$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ban, Qingfu</creatorcontrib><creatorcontrib>Li, Luwei</creatorcontrib><creatorcontrib>Liu, Huimin</creatorcontrib><creatorcontrib>Zhou, Dong</creatorcontrib><creatorcontrib>Zheng, Yaochen</creatorcontrib><creatorcontrib>Qin, Yusheng</creatorcontrib><creatorcontrib>Xing, Ruizhe</creatorcontrib><creatorcontrib>Kong, Jie</creatorcontrib><title>Polymerization-induced assembly-etching engineering to hollow Co@N-doped carbon microcages for superior electromagnetic wave absorption</title><title>Carbon (New York)</title><description>Hollow engineering is an effective approach to optimize impedance matching and modify magnetic-dielectric synergy for enhanced wave absorption capability, but the composition and microstructure manipulation of metal-organic frameworks (MOFs)-derived absorbers remains a challenge. Herein, a novel and facile polymerization-induced assembly-etching strategy is proposed for the manufacture of wrinkled zeolitic imidazolate framework-67@polypyrrole (ZIF-67@PPy) microcages using ammonium persulfate catalyzed pyrrole polymerization and concomitant acid etching. Then, hollow cobalt@N-doped carbon microcages (Co@NCMs) with distorted carbon shells, rich core-shell heterojunctions, highly dispersive Co nanoparticles, and abundant heterogeneous interfaces are produced via high-temperature pyrolysis process, which eliminates the need for additional templates and etching agents. Moreover, the hollow microcage structure with interior cavities and mesopores provides superior impedance matching and lightweight characteristics to the absorbers. Therefore, the hollow absorbers demonstrate a minimum reflection loss of −50.4 dB and an effective absorption bandwidth (EAB) of 3.85 GHz at 2.7 mm with a 10 wt% filler loading. In general, the polymerization-indued assembly-etching strategy inspires the hollow engineering of MOF derivatives, and facilitates the development of superior electromagnetic wave absorption (EMA) materials.
[Display omitted]</description><subject>absorption</subject><subject>ammonium persulfate</subject><subject>carbon</subject><subject>Carbon microcage</subject><subject>electromagnetic radiation</subject><subject>Electromagnetic wave absorption</subject><subject>Hollow engineering</subject><subject>Magnetic-dielectric synergy</subject><subject>manufacturing</subject><subject>Metal-organic framework</subject><subject>microstructure</subject><subject>nanoparticles</subject><subject>polymerization</subject><subject>pyrolysis</subject><subject>pyrroles</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAxZesknxxEnjbhCo4k9CwKJ7y7EnravEDnYKKhfg2rgKa1YzY7034_cRcglsBgzm19uZVqH2bpaznM8ARMnmR2QCouIZFws4JhPGmMjmec5PyVmM2zQWAooJ-Xn37b7DYL_VYL3LrDM7jYaqGLGr232Gg95Yt6bo1tZhEqZ-8HTj29Z_0aW_fc2M75Nj_ALtrA5eqzVG2vhA465PntRgi3oIvlNrh4PV9Et9IlV19KE_HD4nJ41qI1781SlZPdyvlk_Zy9vj8_LuJdOcL4YMRF6VUGkBpgADeYlaFboWBkR6xabWRW4EL-uKQc2Z0dooA7hooATDGj4lV-PaPviPHcZBdjZqbFvl0O-i5FDyOeNVVSVpMUpTnhgDNrIPtlNhL4HJA3a5lWNmecAuR-zJdjPaMKX4tBhk1BZdYmpDIiCNt_8v-AWTM5Gd</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Ban, Qingfu</creator><creator>Li, Luwei</creator><creator>Liu, Huimin</creator><creator>Zhou, Dong</creator><creator>Zheng, Yaochen</creator><creator>Qin, Yusheng</creator><creator>Xing, Ruizhe</creator><creator>Kong, Jie</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-5178-5758</orcidid><orcidid>https://orcid.org/0000-0002-3651-376X</orcidid></search><sort><creationdate>202311</creationdate><title>Polymerization-induced assembly-etching engineering to hollow Co@N-doped carbon microcages for superior electromagnetic wave absorption</title><author>Ban, Qingfu ; Li, Luwei ; Liu, Huimin ; Zhou, Dong ; Zheng, Yaochen ; Qin, Yusheng ; Xing, Ruizhe ; Kong, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-1827517c81d41d125eca4cb8d1817cefbc42d835b701b30dccdad1e9f151d0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>absorption</topic><topic>ammonium persulfate</topic><topic>carbon</topic><topic>Carbon microcage</topic><topic>electromagnetic radiation</topic><topic>Electromagnetic wave absorption</topic><topic>Hollow engineering</topic><topic>Magnetic-dielectric synergy</topic><topic>manufacturing</topic><topic>Metal-organic framework</topic><topic>microstructure</topic><topic>nanoparticles</topic><topic>polymerization</topic><topic>pyrolysis</topic><topic>pyrroles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ban, Qingfu</creatorcontrib><creatorcontrib>Li, Luwei</creatorcontrib><creatorcontrib>Liu, Huimin</creatorcontrib><creatorcontrib>Zhou, Dong</creatorcontrib><creatorcontrib>Zheng, Yaochen</creatorcontrib><creatorcontrib>Qin, Yusheng</creatorcontrib><creatorcontrib>Xing, Ruizhe</creatorcontrib><creatorcontrib>Kong, Jie</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ban, Qingfu</au><au>Li, Luwei</au><au>Liu, Huimin</au><au>Zhou, Dong</au><au>Zheng, Yaochen</au><au>Qin, Yusheng</au><au>Xing, Ruizhe</au><au>Kong, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymerization-induced assembly-etching engineering to hollow Co@N-doped carbon microcages for superior electromagnetic wave absorption</atitle><jtitle>Carbon (New York)</jtitle><date>2023-11</date><risdate>2023</risdate><volume>215</volume><spage>118506</spage><pages>118506-</pages><artnum>118506</artnum><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Hollow engineering is an effective approach to optimize impedance matching and modify magnetic-dielectric synergy for enhanced wave absorption capability, but the composition and microstructure manipulation of metal-organic frameworks (MOFs)-derived absorbers remains a challenge. Herein, a novel and facile polymerization-induced assembly-etching strategy is proposed for the manufacture of wrinkled zeolitic imidazolate framework-67@polypyrrole (ZIF-67@PPy) microcages using ammonium persulfate catalyzed pyrrole polymerization and concomitant acid etching. Then, hollow cobalt@N-doped carbon microcages (Co@NCMs) with distorted carbon shells, rich core-shell heterojunctions, highly dispersive Co nanoparticles, and abundant heterogeneous interfaces are produced via high-temperature pyrolysis process, which eliminates the need for additional templates and etching agents. Moreover, the hollow microcage structure with interior cavities and mesopores provides superior impedance matching and lightweight characteristics to the absorbers. Therefore, the hollow absorbers demonstrate a minimum reflection loss of −50.4 dB and an effective absorption bandwidth (EAB) of 3.85 GHz at 2.7 mm with a 10 wt% filler loading. In general, the polymerization-indued assembly-etching strategy inspires the hollow engineering of MOF derivatives, and facilitates the development of superior electromagnetic wave absorption (EMA) materials.
[Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2023.118506</doi><orcidid>https://orcid.org/0000-0001-5178-5758</orcidid><orcidid>https://orcid.org/0000-0002-3651-376X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2023-11, Vol.215, p.118506, Article 118506 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153603777 |
source | Elsevier ScienceDirect Journals |
subjects | absorption ammonium persulfate carbon Carbon microcage electromagnetic radiation Electromagnetic wave absorption Hollow engineering Magnetic-dielectric synergy manufacturing Metal-organic framework microstructure nanoparticles polymerization pyrolysis pyrroles |
title | Polymerization-induced assembly-etching engineering to hollow Co@N-doped carbon microcages for superior electromagnetic wave absorption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymerization-induced%20assembly-etching%20engineering%20to%20hollow%20Co@N-doped%20carbon%20microcages%20for%20superior%20electromagnetic%20wave%20absorption&rft.jtitle=Carbon%20(New%20York)&rft.au=Ban,%20Qingfu&rft.date=2023-11&rft.volume=215&rft.spage=118506&rft.pages=118506-&rft.artnum=118506&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2023.118506&rft_dat=%3Cproquest_cross%3E3153603777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153603777&rft_id=info:pmid/&rft_els_id=S0008622323007510&rfr_iscdi=true |