Probing local magnetic states in the van der Waals ferromagnet Fe4GeTe2 by a vector-field magnetic force microscope
In this study, we systematically investigate the magnetic domain structure of Fe 4 GeTe 2 single crystals, employing a cryogenic vector-field magnetic force microscope to probe its temperature and magnetic field dependencies. The material undergoes a spin-reversal transition at around 110 K, leading...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2024-04, Vol.59 (15), p.6415-6424 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6424 |
---|---|
container_issue | 15 |
container_start_page | 6415 |
container_title | Journal of materials science |
container_volume | 59 |
creator | Yun, Jinyoung Lee, Yeonkyu Kim, Geunyong Seo, Junho Kang, Beom Tak Kim, Jun Sung Choi, Jae-Hyuk Haberkorn, Nestor Kim, Jeehoon |
description | In this study, we systematically investigate the magnetic domain structure of Fe
4
GeTe
2
single crystals, employing a cryogenic vector-field magnetic force microscope to probe its temperature and magnetic field dependencies. The material undergoes a spin-reversal transition at around 110 K, leading to a gradual magnetization reorientation from in-plane to out-of-plane as temperature decreases. Our observations reveal a complex domain structure featuring striped shapes enclosed by wavy closed loops, exhibiting limited sensitivity to temperature variations without an external magnetic field. When subject to an out-of-plane magnetic field, the domain structure transforms into micrometric elongated striped shapes, gradually evolving into a more irregular pattern. Conversely, in in-plane measurements, the system displays an inhomogeneous distribution of micrometric bubble-like domains, progressively interconnecting into striped shapes. These distinctive responses are attributed to the interplay between small uniaxial and shape anisotropies within the material. Our findings contribute to a deeper understanding of the magnetic domain dynamics in van der Waals ferromagnetic materials, laying the groundwork for further investigations and potential applications in electronic devices.
Graphical Abstract |
doi_str_mv | 10.1007/s10853-024-09583-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153598281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153598281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-d4eb5340c7dfe625b9ffc7ec13966c21ea359e63cf1f61d0362553e7ed79d1093</originalsourceid><addsrcrecordid>eNp9kUFLwzAYhoMoOKd_wFPAi5fol6Rpm6MMN4WBHiYeQ5Z-mR1dM5NusH9vZwXBg6dcnvfhCw8h1xzuOEBxnziUSjIQGQOtSsnKEzLiqpAsK0GekhGAEExkOT8nFymtAUAVgo9Ieo1hWbcr2gRnG7qxqxa72tHU2Q4TrVvafSDd25ZWGOm7tU2iHmMMA0mnmM1wgYIuD9TSPbouROZrbKpflw_RId3ULobkwhYvyZnvPXj1847J2_RxMXli85fZ8-RhzpwE2bEqw6WSGbii8pgLtdTeuwIdlzrPneBopdKYS-e5z3kFsmeUxAKrQlcctByT28G7jeFzh6kzmzo5bBrbYtglI7nqDaUoeY_e_EHXYRfb_jojIeO51pqXPSUG6viTFNGbbaw3Nh4MB3PsYIYOpu9gvjuY40gOo9TD7Qrjr_qf1RcxsIsC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041699918</pqid></control><display><type>article</type><title>Probing local magnetic states in the van der Waals ferromagnet Fe4GeTe2 by a vector-field magnetic force microscope</title><source>SpringerLink Journals</source><creator>Yun, Jinyoung ; Lee, Yeonkyu ; Kim, Geunyong ; Seo, Junho ; Kang, Beom Tak ; Kim, Jun Sung ; Choi, Jae-Hyuk ; Haberkorn, Nestor ; Kim, Jeehoon</creator><creatorcontrib>Yun, Jinyoung ; Lee, Yeonkyu ; Kim, Geunyong ; Seo, Junho ; Kang, Beom Tak ; Kim, Jun Sung ; Choi, Jae-Hyuk ; Haberkorn, Nestor ; Kim, Jeehoon</creatorcontrib><description>In this study, we systematically investigate the magnetic domain structure of Fe
4
GeTe
2
single crystals, employing a cryogenic vector-field magnetic force microscope to probe its temperature and magnetic field dependencies. The material undergoes a spin-reversal transition at around 110 K, leading to a gradual magnetization reorientation from in-plane to out-of-plane as temperature decreases. Our observations reveal a complex domain structure featuring striped shapes enclosed by wavy closed loops, exhibiting limited sensitivity to temperature variations without an external magnetic field. When subject to an out-of-plane magnetic field, the domain structure transforms into micrometric elongated striped shapes, gradually evolving into a more irregular pattern. Conversely, in in-plane measurements, the system displays an inhomogeneous distribution of micrometric bubble-like domains, progressively interconnecting into striped shapes. These distinctive responses are attributed to the interplay between small uniaxial and shape anisotropies within the material. Our findings contribute to a deeper understanding of the magnetic domain dynamics in van der Waals ferromagnetic materials, laying the groundwork for further investigations and potential applications in electronic devices.
Graphical Abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-024-09583-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Closed loops ; Crystallography and Scattering Methods ; domain ; Electronic Materials ; Elongated structure ; Ferromagnetic materials ; ferromagnetism ; Magnetic domains ; Magnetic fields ; Magnetic force microscopy ; Materials Science ; Polymer Sciences ; Single crystals ; Solid Mechanics ; temperature ; van der Waals forces</subject><ispartof>Journal of materials science, 2024-04, Vol.59 (15), p.6415-6424</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-d4eb5340c7dfe625b9ffc7ec13966c21ea359e63cf1f61d0362553e7ed79d1093</cites><orcidid>0000-0002-4613-0017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-024-09583-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-024-09583-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yun, Jinyoung</creatorcontrib><creatorcontrib>Lee, Yeonkyu</creatorcontrib><creatorcontrib>Kim, Geunyong</creatorcontrib><creatorcontrib>Seo, Junho</creatorcontrib><creatorcontrib>Kang, Beom Tak</creatorcontrib><creatorcontrib>Kim, Jun Sung</creatorcontrib><creatorcontrib>Choi, Jae-Hyuk</creatorcontrib><creatorcontrib>Haberkorn, Nestor</creatorcontrib><creatorcontrib>Kim, Jeehoon</creatorcontrib><title>Probing local magnetic states in the van der Waals ferromagnet Fe4GeTe2 by a vector-field magnetic force microscope</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>In this study, we systematically investigate the magnetic domain structure of Fe
4
GeTe
2
single crystals, employing a cryogenic vector-field magnetic force microscope to probe its temperature and magnetic field dependencies. The material undergoes a spin-reversal transition at around 110 K, leading to a gradual magnetization reorientation from in-plane to out-of-plane as temperature decreases. Our observations reveal a complex domain structure featuring striped shapes enclosed by wavy closed loops, exhibiting limited sensitivity to temperature variations without an external magnetic field. When subject to an out-of-plane magnetic field, the domain structure transforms into micrometric elongated striped shapes, gradually evolving into a more irregular pattern. Conversely, in in-plane measurements, the system displays an inhomogeneous distribution of micrometric bubble-like domains, progressively interconnecting into striped shapes. These distinctive responses are attributed to the interplay between small uniaxial and shape anisotropies within the material. Our findings contribute to a deeper understanding of the magnetic domain dynamics in van der Waals ferromagnetic materials, laying the groundwork for further investigations and potential applications in electronic devices.
Graphical Abstract</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Closed loops</subject><subject>Crystallography and Scattering Methods</subject><subject>domain</subject><subject>Electronic Materials</subject><subject>Elongated structure</subject><subject>Ferromagnetic materials</subject><subject>ferromagnetism</subject><subject>Magnetic domains</subject><subject>Magnetic fields</subject><subject>Magnetic force microscopy</subject><subject>Materials Science</subject><subject>Polymer Sciences</subject><subject>Single crystals</subject><subject>Solid Mechanics</subject><subject>temperature</subject><subject>van der Waals forces</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUFLwzAYhoMoOKd_wFPAi5fol6Rpm6MMN4WBHiYeQ5Z-mR1dM5NusH9vZwXBg6dcnvfhCw8h1xzuOEBxnziUSjIQGQOtSsnKEzLiqpAsK0GekhGAEExkOT8nFymtAUAVgo9Ieo1hWbcr2gRnG7qxqxa72tHU2Q4TrVvafSDd25ZWGOm7tU2iHmMMA0mnmM1wgYIuD9TSPbouROZrbKpflw_RId3ULobkwhYvyZnvPXj1847J2_RxMXli85fZ8-RhzpwE2bEqw6WSGbii8pgLtdTeuwIdlzrPneBopdKYS-e5z3kFsmeUxAKrQlcctByT28G7jeFzh6kzmzo5bBrbYtglI7nqDaUoeY_e_EHXYRfb_jojIeO51pqXPSUG6viTFNGbbaw3Nh4MB3PsYIYOpu9gvjuY40gOo9TD7Qrjr_qf1RcxsIsC</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Yun, Jinyoung</creator><creator>Lee, Yeonkyu</creator><creator>Kim, Geunyong</creator><creator>Seo, Junho</creator><creator>Kang, Beom Tak</creator><creator>Kim, Jun Sung</creator><creator>Choi, Jae-Hyuk</creator><creator>Haberkorn, Nestor</creator><creator>Kim, Jeehoon</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-4613-0017</orcidid></search><sort><creationdate>20240401</creationdate><title>Probing local magnetic states in the van der Waals ferromagnet Fe4GeTe2 by a vector-field magnetic force microscope</title><author>Yun, Jinyoung ; Lee, Yeonkyu ; Kim, Geunyong ; Seo, Junho ; Kang, Beom Tak ; Kim, Jun Sung ; Choi, Jae-Hyuk ; Haberkorn, Nestor ; Kim, Jeehoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-d4eb5340c7dfe625b9ffc7ec13966c21ea359e63cf1f61d0362553e7ed79d1093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Closed loops</topic><topic>Crystallography and Scattering Methods</topic><topic>domain</topic><topic>Electronic Materials</topic><topic>Elongated structure</topic><topic>Ferromagnetic materials</topic><topic>ferromagnetism</topic><topic>Magnetic domains</topic><topic>Magnetic fields</topic><topic>Magnetic force microscopy</topic><topic>Materials Science</topic><topic>Polymer Sciences</topic><topic>Single crystals</topic><topic>Solid Mechanics</topic><topic>temperature</topic><topic>van der Waals forces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yun, Jinyoung</creatorcontrib><creatorcontrib>Lee, Yeonkyu</creatorcontrib><creatorcontrib>Kim, Geunyong</creatorcontrib><creatorcontrib>Seo, Junho</creatorcontrib><creatorcontrib>Kang, Beom Tak</creatorcontrib><creatorcontrib>Kim, Jun Sung</creatorcontrib><creatorcontrib>Choi, Jae-Hyuk</creatorcontrib><creatorcontrib>Haberkorn, Nestor</creatorcontrib><creatorcontrib>Kim, Jeehoon</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yun, Jinyoung</au><au>Lee, Yeonkyu</au><au>Kim, Geunyong</au><au>Seo, Junho</au><au>Kang, Beom Tak</au><au>Kim, Jun Sung</au><au>Choi, Jae-Hyuk</au><au>Haberkorn, Nestor</au><au>Kim, Jeehoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing local magnetic states in the van der Waals ferromagnet Fe4GeTe2 by a vector-field magnetic force microscope</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>59</volume><issue>15</issue><spage>6415</spage><epage>6424</epage><pages>6415-6424</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>In this study, we systematically investigate the magnetic domain structure of Fe
4
GeTe
2
single crystals, employing a cryogenic vector-field magnetic force microscope to probe its temperature and magnetic field dependencies. The material undergoes a spin-reversal transition at around 110 K, leading to a gradual magnetization reorientation from in-plane to out-of-plane as temperature decreases. Our observations reveal a complex domain structure featuring striped shapes enclosed by wavy closed loops, exhibiting limited sensitivity to temperature variations without an external magnetic field. When subject to an out-of-plane magnetic field, the domain structure transforms into micrometric elongated striped shapes, gradually evolving into a more irregular pattern. Conversely, in in-plane measurements, the system displays an inhomogeneous distribution of micrometric bubble-like domains, progressively interconnecting into striped shapes. These distinctive responses are attributed to the interplay between small uniaxial and shape anisotropies within the material. Our findings contribute to a deeper understanding of the magnetic domain dynamics in van der Waals ferromagnetic materials, laying the groundwork for further investigations and potential applications in electronic devices.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-024-09583-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4613-0017</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2024-04, Vol.59 (15), p.6415-6424 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153598281 |
source | SpringerLink Journals |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Closed loops Crystallography and Scattering Methods domain Electronic Materials Elongated structure Ferromagnetic materials ferromagnetism Magnetic domains Magnetic fields Magnetic force microscopy Materials Science Polymer Sciences Single crystals Solid Mechanics temperature van der Waals forces |
title | Probing local magnetic states in the van der Waals ferromagnet Fe4GeTe2 by a vector-field magnetic force microscope |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20local%20magnetic%20states%20in%20the%20van%20der%20Waals%20ferromagnet%20Fe4GeTe2%20by%20a%20vector-field%20magnetic%20force%20microscope&rft.jtitle=Journal%20of%20materials%20science&rft.au=Yun,%20Jinyoung&rft.date=2024-04-01&rft.volume=59&rft.issue=15&rft.spage=6415&rft.epage=6424&rft.pages=6415-6424&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-024-09583-8&rft_dat=%3Cproquest_cross%3E3153598281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041699918&rft_id=info:pmid/&rfr_iscdi=true |