Reliability of ERA5 and ERA5-Land reanalysis data in the Canadian Prairies

Meteorological data are essential in precision agriculture in the Canadian Prairies and are often associated with spatiotemporal discontinuity and scarcity. Reanalysis data products aim to address this challenge and have recently gained popularity. The European Centre for Medium-Range Weather Foreca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied climatology 2024-04, Vol.155 (4), p.3087-3098
Hauptverfasser: Fatolahzadeh Gheysari, Ali, Maghoul, Pooneh, Ojo, E. RoTimi, Shalaby, Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3098
container_issue 4
container_start_page 3087
container_title Theoretical and applied climatology
container_volume 155
creator Fatolahzadeh Gheysari, Ali
Maghoul, Pooneh
Ojo, E. RoTimi
Shalaby, Ahmed
description Meteorological data are essential in precision agriculture in the Canadian Prairies and are often associated with spatiotemporal discontinuity and scarcity. Reanalysis data products aim to address this challenge and have recently gained popularity. The European Centre for Medium-Range Weather Forecasts’ ERA5, and its high-resolution land component, ERA5-Land, are two reanalysis datasets that provide hourly estimates of many climate variables globally. This paper focuses on evaluating the performance of ERA5 and ERA5-Land over the Canadian prairies, utilizing data from 109 weather stations situated in southern Manitoba, Canada. Various variables are investigated at daily, monthly, and annual aggregation periods, including air temperature, ground temperature, soil water content, wind speed, precipitation, and evaporation. The datasets are evaluated regarding seasonal bias and spatial distribution of errors over the study area. Regression parameters are also presented to address the biases. Among the investigated variables, air temperature and wind speed exhibit the lowest errors. The evaluation further reveals an overall tendency to overpredict ground temperatures and precipitation while underpredicting evaporation. Based on these findings, the ERA5 and ERA5-Land datasets hold significant potential in applications such as climate-smart agriculture, energy demand analysis, assessing renewable energy resources, and facilitating sustainable urban development.
doi_str_mv 10.1007/s00704-023-04771-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153597314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957801335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-f18f10ff95d9282908c85d28a3d4f09cea6832b3dc282904bff281bbbfeca3213</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4BTwEvXqIvX032WEr9oqAUBW8hu5toyna3JttD--tNW0Hw4OW94b2ZgRmELincUAB1m_IAQYBxAkIpSrZHaEAFF0QIzY_RAKhSRBX6_RSdpbQAADYaqQF6mrsm2DI0od_gzuPpfCyxbes9ILMdis62ttmkkHBte4tDi_tPhyf5Wgfb4pdoQwwunaMTb5vkLn72EL3dTV8nD2T2fP84Gc9IxSXriafaU_C-kHXBNCtAV1rWTFteCw9F5exIc1byutp_Rek907QsS-8qyxnlQ3R98F3F7mvtUm-WIVWuaWzrunUynEouC8Vz_CG6-kNddOuY0yTDCqk0UM5lZrEDq4pdStF5s4phaePGUDC7es2hXpPrNft6zTaL-EGUMrn9cPHX-h_VN50Se7k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957801335</pqid></control><display><type>article</type><title>Reliability of ERA5 and ERA5-Land reanalysis data in the Canadian Prairies</title><source>Springer Nature - Complete Springer Journals</source><creator>Fatolahzadeh Gheysari, Ali ; Maghoul, Pooneh ; Ojo, E. RoTimi ; Shalaby, Ahmed</creator><creatorcontrib>Fatolahzadeh Gheysari, Ali ; Maghoul, Pooneh ; Ojo, E. RoTimi ; Shalaby, Ahmed</creatorcontrib><description>Meteorological data are essential in precision agriculture in the Canadian Prairies and are often associated with spatiotemporal discontinuity and scarcity. Reanalysis data products aim to address this challenge and have recently gained popularity. The European Centre for Medium-Range Weather Forecasts’ ERA5, and its high-resolution land component, ERA5-Land, are two reanalysis datasets that provide hourly estimates of many climate variables globally. This paper focuses on evaluating the performance of ERA5 and ERA5-Land over the Canadian prairies, utilizing data from 109 weather stations situated in southern Manitoba, Canada. Various variables are investigated at daily, monthly, and annual aggregation periods, including air temperature, ground temperature, soil water content, wind speed, precipitation, and evaporation. The datasets are evaluated regarding seasonal bias and spatial distribution of errors over the study area. Regression parameters are also presented to address the biases. Among the investigated variables, air temperature and wind speed exhibit the lowest errors. The evaluation further reveals an overall tendency to overpredict ground temperatures and precipitation while underpredicting evaporation. Based on these findings, the ERA5 and ERA5-Land datasets hold significant potential in applications such as climate-smart agriculture, energy demand analysis, assessing renewable energy resources, and facilitating sustainable urban development.</description><identifier>ISSN: 0177-798X</identifier><identifier>EISSN: 1434-4483</identifier><identifier>DOI: 10.1007/s00704-023-04771-z</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Aggregation ; Agriculture ; Air temperature ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Bias ; Climate ; Climate and weather ; Climate change ; Climate-smart agriculture ; Climatic analysis ; Climatology ; data collection ; Datasets ; Demand analysis ; Digital agriculture ; Earth and Environmental Science ; Earth Sciences ; energy ; Energy demand ; Energy resources ; Energy sources ; Errors ; Evaporation ; Ground temperatures ; Manitoba ; Medium-range forecasting ; Meteorological data ; Moisture content ; Performance evaluation ; Prairies ; Precipitation ; Precision agriculture ; Renewable energy ; renewable energy sources ; Renewable resources ; Seasonal distribution ; Soil temperature ; Soil water ; soil water content ; Spatial distribution ; Sustainable development ; Temperature ; Urban development ; Urbanization ; Waste Water Technology ; Water content ; Water Management ; Water Pollution Control ; Weather ; Weather forecasting ; Weather stations ; Wind ; Wind speed</subject><ispartof>Theoretical and applied climatology, 2024-04, Vol.155 (4), p.3087-3098</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-f18f10ff95d9282908c85d28a3d4f09cea6832b3dc282904bff281bbbfeca3213</citedby><cites>FETCH-LOGICAL-c352t-f18f10ff95d9282908c85d28a3d4f09cea6832b3dc282904bff281bbbfeca3213</cites><orcidid>0000-0003-3812-6883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00704-023-04771-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00704-023-04771-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fatolahzadeh Gheysari, Ali</creatorcontrib><creatorcontrib>Maghoul, Pooneh</creatorcontrib><creatorcontrib>Ojo, E. RoTimi</creatorcontrib><creatorcontrib>Shalaby, Ahmed</creatorcontrib><title>Reliability of ERA5 and ERA5-Land reanalysis data in the Canadian Prairies</title><title>Theoretical and applied climatology</title><addtitle>Theor Appl Climatol</addtitle><description>Meteorological data are essential in precision agriculture in the Canadian Prairies and are often associated with spatiotemporal discontinuity and scarcity. Reanalysis data products aim to address this challenge and have recently gained popularity. The European Centre for Medium-Range Weather Forecasts’ ERA5, and its high-resolution land component, ERA5-Land, are two reanalysis datasets that provide hourly estimates of many climate variables globally. This paper focuses on evaluating the performance of ERA5 and ERA5-Land over the Canadian prairies, utilizing data from 109 weather stations situated in southern Manitoba, Canada. Various variables are investigated at daily, monthly, and annual aggregation periods, including air temperature, ground temperature, soil water content, wind speed, precipitation, and evaporation. The datasets are evaluated regarding seasonal bias and spatial distribution of errors over the study area. Regression parameters are also presented to address the biases. Among the investigated variables, air temperature and wind speed exhibit the lowest errors. The evaluation further reveals an overall tendency to overpredict ground temperatures and precipitation while underpredicting evaporation. Based on these findings, the ERA5 and ERA5-Land datasets hold significant potential in applications such as climate-smart agriculture, energy demand analysis, assessing renewable energy resources, and facilitating sustainable urban development.</description><subject>Aggregation</subject><subject>Agriculture</subject><subject>Air temperature</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Bias</subject><subject>Climate</subject><subject>Climate and weather</subject><subject>Climate change</subject><subject>Climate-smart agriculture</subject><subject>Climatic analysis</subject><subject>Climatology</subject><subject>data collection</subject><subject>Datasets</subject><subject>Demand analysis</subject><subject>Digital agriculture</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>energy</subject><subject>Energy demand</subject><subject>Energy resources</subject><subject>Energy sources</subject><subject>Errors</subject><subject>Evaporation</subject><subject>Ground temperatures</subject><subject>Manitoba</subject><subject>Medium-range forecasting</subject><subject>Meteorological data</subject><subject>Moisture content</subject><subject>Performance evaluation</subject><subject>Prairies</subject><subject>Precipitation</subject><subject>Precision agriculture</subject><subject>Renewable energy</subject><subject>renewable energy sources</subject><subject>Renewable resources</subject><subject>Seasonal distribution</subject><subject>Soil temperature</subject><subject>Soil water</subject><subject>soil water content</subject><subject>Spatial distribution</subject><subject>Sustainable development</subject><subject>Temperature</subject><subject>Urban development</subject><subject>Urbanization</subject><subject>Waste Water Technology</subject><subject>Water content</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Weather</subject><subject>Weather forecasting</subject><subject>Weather stations</subject><subject>Wind</subject><subject>Wind speed</subject><issn>0177-798X</issn><issn>1434-4483</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4BTwEvXqIvX032WEr9oqAUBW8hu5toyna3JttD--tNW0Hw4OW94b2ZgRmELincUAB1m_IAQYBxAkIpSrZHaEAFF0QIzY_RAKhSRBX6_RSdpbQAADYaqQF6mrsm2DI0od_gzuPpfCyxbes9ILMdis62ttmkkHBte4tDi_tPhyf5Wgfb4pdoQwwunaMTb5vkLn72EL3dTV8nD2T2fP84Gc9IxSXriafaU_C-kHXBNCtAV1rWTFteCw9F5exIc1byutp_Rek907QsS-8qyxnlQ3R98F3F7mvtUm-WIVWuaWzrunUynEouC8Vz_CG6-kNddOuY0yTDCqk0UM5lZrEDq4pdStF5s4phaePGUDC7es2hXpPrNft6zTaL-EGUMrn9cPHX-h_VN50Se7k</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Fatolahzadeh Gheysari, Ali</creator><creator>Maghoul, Pooneh</creator><creator>Ojo, E. RoTimi</creator><creator>Shalaby, Ahmed</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3812-6883</orcidid></search><sort><creationdate>20240401</creationdate><title>Reliability of ERA5 and ERA5-Land reanalysis data in the Canadian Prairies</title><author>Fatolahzadeh Gheysari, Ali ; Maghoul, Pooneh ; Ojo, E. RoTimi ; Shalaby, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-f18f10ff95d9282908c85d28a3d4f09cea6832b3dc282904bff281bbbfeca3213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aggregation</topic><topic>Agriculture</topic><topic>Air temperature</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Bias</topic><topic>Climate</topic><topic>Climate and weather</topic><topic>Climate change</topic><topic>Climate-smart agriculture</topic><topic>Climatic analysis</topic><topic>Climatology</topic><topic>data collection</topic><topic>Datasets</topic><topic>Demand analysis</topic><topic>Digital agriculture</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>energy</topic><topic>Energy demand</topic><topic>Energy resources</topic><topic>Energy sources</topic><topic>Errors</topic><topic>Evaporation</topic><topic>Ground temperatures</topic><topic>Manitoba</topic><topic>Medium-range forecasting</topic><topic>Meteorological data</topic><topic>Moisture content</topic><topic>Performance evaluation</topic><topic>Prairies</topic><topic>Precipitation</topic><topic>Precision agriculture</topic><topic>Renewable energy</topic><topic>renewable energy sources</topic><topic>Renewable resources</topic><topic>Seasonal distribution</topic><topic>Soil temperature</topic><topic>Soil water</topic><topic>soil water content</topic><topic>Spatial distribution</topic><topic>Sustainable development</topic><topic>Temperature</topic><topic>Urban development</topic><topic>Urbanization</topic><topic>Waste Water Technology</topic><topic>Water content</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Weather</topic><topic>Weather forecasting</topic><topic>Weather stations</topic><topic>Wind</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatolahzadeh Gheysari, Ali</creatorcontrib><creatorcontrib>Maghoul, Pooneh</creatorcontrib><creatorcontrib>Ojo, E. RoTimi</creatorcontrib><creatorcontrib>Shalaby, Ahmed</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Theoretical and applied climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatolahzadeh Gheysari, Ali</au><au>Maghoul, Pooneh</au><au>Ojo, E. RoTimi</au><au>Shalaby, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliability of ERA5 and ERA5-Land reanalysis data in the Canadian Prairies</atitle><jtitle>Theoretical and applied climatology</jtitle><stitle>Theor Appl Climatol</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>155</volume><issue>4</issue><spage>3087</spage><epage>3098</epage><pages>3087-3098</pages><issn>0177-798X</issn><eissn>1434-4483</eissn><abstract>Meteorological data are essential in precision agriculture in the Canadian Prairies and are often associated with spatiotemporal discontinuity and scarcity. Reanalysis data products aim to address this challenge and have recently gained popularity. The European Centre for Medium-Range Weather Forecasts’ ERA5, and its high-resolution land component, ERA5-Land, are two reanalysis datasets that provide hourly estimates of many climate variables globally. This paper focuses on evaluating the performance of ERA5 and ERA5-Land over the Canadian prairies, utilizing data from 109 weather stations situated in southern Manitoba, Canada. Various variables are investigated at daily, monthly, and annual aggregation periods, including air temperature, ground temperature, soil water content, wind speed, precipitation, and evaporation. The datasets are evaluated regarding seasonal bias and spatial distribution of errors over the study area. Regression parameters are also presented to address the biases. Among the investigated variables, air temperature and wind speed exhibit the lowest errors. The evaluation further reveals an overall tendency to overpredict ground temperatures and precipitation while underpredicting evaporation. Based on these findings, the ERA5 and ERA5-Land datasets hold significant potential in applications such as climate-smart agriculture, energy demand analysis, assessing renewable energy resources, and facilitating sustainable urban development.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00704-023-04771-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3812-6883</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0177-798X
ispartof Theoretical and applied climatology, 2024-04, Vol.155 (4), p.3087-3098
issn 0177-798X
1434-4483
language eng
recordid cdi_proquest_miscellaneous_3153597314
source Springer Nature - Complete Springer Journals
subjects Aggregation
Agriculture
Air temperature
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Bias
Climate
Climate and weather
Climate change
Climate-smart agriculture
Climatic analysis
Climatology
data collection
Datasets
Demand analysis
Digital agriculture
Earth and Environmental Science
Earth Sciences
energy
Energy demand
Energy resources
Energy sources
Errors
Evaporation
Ground temperatures
Manitoba
Medium-range forecasting
Meteorological data
Moisture content
Performance evaluation
Prairies
Precipitation
Precision agriculture
Renewable energy
renewable energy sources
Renewable resources
Seasonal distribution
Soil temperature
Soil water
soil water content
Spatial distribution
Sustainable development
Temperature
Urban development
Urbanization
Waste Water Technology
Water content
Water Management
Water Pollution Control
Weather
Weather forecasting
Weather stations
Wind
Wind speed
title Reliability of ERA5 and ERA5-Land reanalysis data in the Canadian Prairies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T23%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliability%20of%20ERA5%20and%20ERA5-Land%20reanalysis%20data%20in%20the%20Canadian%20Prairies&rft.jtitle=Theoretical%20and%20applied%20climatology&rft.au=Fatolahzadeh%20Gheysari,%20Ali&rft.date=2024-04-01&rft.volume=155&rft.issue=4&rft.spage=3087&rft.epage=3098&rft.pages=3087-3098&rft.issn=0177-798X&rft.eissn=1434-4483&rft_id=info:doi/10.1007/s00704-023-04771-z&rft_dat=%3Cproquest_cross%3E2957801335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957801335&rft_id=info:pmid/&rfr_iscdi=true