Syntheses of diaza[1.1.1] and [1.1.1.1] paracyclophanes by smiles rearrangement

[Display omitted] •Two strained macrocycles, diaza[1.1.1] and [1.1.1.1]paracyclophanes were synthesized.•The synthetic route is short and simple.•The molecular structures of two paracyclophanes were simulated by DFT calculations.•Diaza[1.1.1]paracyclophane is highly distorted.•Intramolecular partial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tetrahedron letters 2023-10, Vol.130, p.154762, Article 154762
Hauptverfasser: Takemura, Hiroyuki, Wakamatsu, Maho, Murakami, Hiroko, Iwanaga, Tetsuo, Sako, Katsuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 154762
container_title Tetrahedron letters
container_volume 130
creator Takemura, Hiroyuki
Wakamatsu, Maho
Murakami, Hiroko
Iwanaga, Tetsuo
Sako, Katsuya
description [Display omitted] •Two strained macrocycles, diaza[1.1.1] and [1.1.1.1]paracyclophanes were synthesized.•The synthetic route is short and simple.•The molecular structures of two paracyclophanes were simulated by DFT calculations.•Diaza[1.1.1]paracyclophane is highly distorted.•Intramolecular partially overlapping MO’s were observed, which led to the sharpening of the bridging units. Highly strained diaza[1.1.1] and [1.1.1.1]paracyclophanes were synthesized using Smiles rearrangement (paracyclophane is hereafter abbreviated as PCP). Smiles rearrangement allowed the synthesis of compounds with bridging groups, which could not be obtained using the previously reported Chapman rearrangement method. The two synthetic methods are complementary to each other and therefore useful for the synthesis of diaza[1n]PCP. However, in Chapman rearrangement, the diaza[1.1.1]PCP precursor is a rigid molecule and the precursor could not be synthesized. In contrast, the Smiles rearrangement uses a PCP-precursor rearrangement with low distortion; thus, [1.1.1]PCP can be obtained. Furthermore, the syntheses of 1a and 2 can be performed on a gram scale. However, due to their low solubility, the molecular structure could not be confirmed by crystallographic analysis; therefore, these structures were optimized by DFT calculations and discussed.
doi_str_mv 10.1016/j.tetlet.2023.154762
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153594267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040403923004720</els_id><sourcerecordid>3153594267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-d08116fe5e06a959745aa69e6cc119f3aef376b4700df005f7b01665c1bf5dce3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoPPPTopXXSNGl7EWTxCxb2oJ5EQppO3Cz9WJMo1F9vlnp25jBv4M1j3iPkkkJGgYrrXRYwdBiyHHKWUV6UIj8iC1qVLGW8osdkAVBAWgCrT8mZ9zuIJSpYkM3zNIQtevTJaJLWqh_1RrPY74ka2mTGh22vnNKT7sb9Vg2R3UyJ720XkUPlnBo-sMchnJMTozqPF39zSV7v715Wj-l68_C0ul2nOq-qkLZQUSoMcgShal6XBVdK1Ci0prQ2TKFhpWiKEqA1ANyUTTQquKaN4a1GtiRXs-7ejZ9f6IPsrdfYdfG58ctLRjnjdZGLMlKLmard6L1DI_fO9spNkoI85Cd3cs5PHvKTc37x7GY-w2jj26KTXlscNLbWoQ6yHe3_Ar_Tw3l0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153594267</pqid></control><display><type>article</type><title>Syntheses of diaza[1.1.1] and [1.1.1.1] paracyclophanes by smiles rearrangement</title><source>Elsevier ScienceDirect Journals</source><creator>Takemura, Hiroyuki ; Wakamatsu, Maho ; Murakami, Hiroko ; Iwanaga, Tetsuo ; Sako, Katsuya</creator><creatorcontrib>Takemura, Hiroyuki ; Wakamatsu, Maho ; Murakami, Hiroko ; Iwanaga, Tetsuo ; Sako, Katsuya</creatorcontrib><description>[Display omitted] •Two strained macrocycles, diaza[1.1.1] and [1.1.1.1]paracyclophanes were synthesized.•The synthetic route is short and simple.•The molecular structures of two paracyclophanes were simulated by DFT calculations.•Diaza[1.1.1]paracyclophane is highly distorted.•Intramolecular partially overlapping MO’s were observed, which led to the sharpening of the bridging units. Highly strained diaza[1.1.1] and [1.1.1.1]paracyclophanes were synthesized using Smiles rearrangement (paracyclophane is hereafter abbreviated as PCP). Smiles rearrangement allowed the synthesis of compounds with bridging groups, which could not be obtained using the previously reported Chapman rearrangement method. The two synthetic methods are complementary to each other and therefore useful for the synthesis of diaza[1n]PCP. However, in Chapman rearrangement, the diaza[1.1.1]PCP precursor is a rigid molecule and the precursor could not be synthesized. In contrast, the Smiles rearrangement uses a PCP-precursor rearrangement with low distortion; thus, [1.1.1]PCP can be obtained. Furthermore, the syntheses of 1a and 2 can be performed on a gram scale. However, due to their low solubility, the molecular structure could not be confirmed by crystallographic analysis; therefore, these structures were optimized by DFT calculations and discussed.</description><identifier>ISSN: 0040-4039</identifier><identifier>EISSN: 1873-3581</identifier><identifier>DOI: 10.1016/j.tetlet.2023.154762</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>[1n]paracyclophanes ; chemical structure ; Cyclophanes ; Macrocycles ; methodology ; Smiles rearrangement ; solubility ; strains</subject><ispartof>Tetrahedron letters, 2023-10, Vol.130, p.154762, Article 154762</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-d08116fe5e06a959745aa69e6cc119f3aef376b4700df005f7b01665c1bf5dce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0040403923004720$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Takemura, Hiroyuki</creatorcontrib><creatorcontrib>Wakamatsu, Maho</creatorcontrib><creatorcontrib>Murakami, Hiroko</creatorcontrib><creatorcontrib>Iwanaga, Tetsuo</creatorcontrib><creatorcontrib>Sako, Katsuya</creatorcontrib><title>Syntheses of diaza[1.1.1] and [1.1.1.1] paracyclophanes by smiles rearrangement</title><title>Tetrahedron letters</title><description>[Display omitted] •Two strained macrocycles, diaza[1.1.1] and [1.1.1.1]paracyclophanes were synthesized.•The synthetic route is short and simple.•The molecular structures of two paracyclophanes were simulated by DFT calculations.•Diaza[1.1.1]paracyclophane is highly distorted.•Intramolecular partially overlapping MO’s were observed, which led to the sharpening of the bridging units. Highly strained diaza[1.1.1] and [1.1.1.1]paracyclophanes were synthesized using Smiles rearrangement (paracyclophane is hereafter abbreviated as PCP). Smiles rearrangement allowed the synthesis of compounds with bridging groups, which could not be obtained using the previously reported Chapman rearrangement method. The two synthetic methods are complementary to each other and therefore useful for the synthesis of diaza[1n]PCP. However, in Chapman rearrangement, the diaza[1.1.1]PCP precursor is a rigid molecule and the precursor could not be synthesized. In contrast, the Smiles rearrangement uses a PCP-precursor rearrangement with low distortion; thus, [1.1.1]PCP can be obtained. Furthermore, the syntheses of 1a and 2 can be performed on a gram scale. However, due to their low solubility, the molecular structure could not be confirmed by crystallographic analysis; therefore, these structures were optimized by DFT calculations and discussed.</description><subject>[1n]paracyclophanes</subject><subject>chemical structure</subject><subject>Cyclophanes</subject><subject>Macrocycles</subject><subject>methodology</subject><subject>Smiles rearrangement</subject><subject>solubility</subject><subject>strains</subject><issn>0040-4039</issn><issn>1873-3581</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoPPPTopXXSNGl7EWTxCxb2oJ5EQppO3Cz9WJMo1F9vlnp25jBv4M1j3iPkkkJGgYrrXRYwdBiyHHKWUV6UIj8iC1qVLGW8osdkAVBAWgCrT8mZ9zuIJSpYkM3zNIQtevTJaJLWqh_1RrPY74ka2mTGh22vnNKT7sb9Vg2R3UyJ720XkUPlnBo-sMchnJMTozqPF39zSV7v715Wj-l68_C0ul2nOq-qkLZQUSoMcgShal6XBVdK1Ci0prQ2TKFhpWiKEqA1ANyUTTQquKaN4a1GtiRXs-7ejZ9f6IPsrdfYdfG58ctLRjnjdZGLMlKLmard6L1DI_fO9spNkoI85Cd3cs5PHvKTc37x7GY-w2jj26KTXlscNLbWoQ6yHe3_Ar_Tw3l0</recordid><startdate>20231025</startdate><enddate>20231025</enddate><creator>Takemura, Hiroyuki</creator><creator>Wakamatsu, Maho</creator><creator>Murakami, Hiroko</creator><creator>Iwanaga, Tetsuo</creator><creator>Sako, Katsuya</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20231025</creationdate><title>Syntheses of diaza[1.1.1] and [1.1.1.1] paracyclophanes by smiles rearrangement</title><author>Takemura, Hiroyuki ; Wakamatsu, Maho ; Murakami, Hiroko ; Iwanaga, Tetsuo ; Sako, Katsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-d08116fe5e06a959745aa69e6cc119f3aef376b4700df005f7b01665c1bf5dce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>[1n]paracyclophanes</topic><topic>chemical structure</topic><topic>Cyclophanes</topic><topic>Macrocycles</topic><topic>methodology</topic><topic>Smiles rearrangement</topic><topic>solubility</topic><topic>strains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takemura, Hiroyuki</creatorcontrib><creatorcontrib>Wakamatsu, Maho</creatorcontrib><creatorcontrib>Murakami, Hiroko</creatorcontrib><creatorcontrib>Iwanaga, Tetsuo</creatorcontrib><creatorcontrib>Sako, Katsuya</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Tetrahedron letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takemura, Hiroyuki</au><au>Wakamatsu, Maho</au><au>Murakami, Hiroko</au><au>Iwanaga, Tetsuo</au><au>Sako, Katsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Syntheses of diaza[1.1.1] and [1.1.1.1] paracyclophanes by smiles rearrangement</atitle><jtitle>Tetrahedron letters</jtitle><date>2023-10-25</date><risdate>2023</risdate><volume>130</volume><spage>154762</spage><pages>154762-</pages><artnum>154762</artnum><issn>0040-4039</issn><eissn>1873-3581</eissn><abstract>[Display omitted] •Two strained macrocycles, diaza[1.1.1] and [1.1.1.1]paracyclophanes were synthesized.•The synthetic route is short and simple.•The molecular structures of two paracyclophanes were simulated by DFT calculations.•Diaza[1.1.1]paracyclophane is highly distorted.•Intramolecular partially overlapping MO’s were observed, which led to the sharpening of the bridging units. Highly strained diaza[1.1.1] and [1.1.1.1]paracyclophanes were synthesized using Smiles rearrangement (paracyclophane is hereafter abbreviated as PCP). Smiles rearrangement allowed the synthesis of compounds with bridging groups, which could not be obtained using the previously reported Chapman rearrangement method. The two synthetic methods are complementary to each other and therefore useful for the synthesis of diaza[1n]PCP. However, in Chapman rearrangement, the diaza[1.1.1]PCP precursor is a rigid molecule and the precursor could not be synthesized. In contrast, the Smiles rearrangement uses a PCP-precursor rearrangement with low distortion; thus, [1.1.1]PCP can be obtained. Furthermore, the syntheses of 1a and 2 can be performed on a gram scale. However, due to their low solubility, the molecular structure could not be confirmed by crystallographic analysis; therefore, these structures were optimized by DFT calculations and discussed.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.tetlet.2023.154762</doi></addata></record>
fulltext fulltext
identifier ISSN: 0040-4039
ispartof Tetrahedron letters, 2023-10, Vol.130, p.154762, Article 154762
issn 0040-4039
1873-3581
language eng
recordid cdi_proquest_miscellaneous_3153594267
source Elsevier ScienceDirect Journals
subjects [1n]paracyclophanes
chemical structure
Cyclophanes
Macrocycles
methodology
Smiles rearrangement
solubility
strains
title Syntheses of diaza[1.1.1] and [1.1.1.1] paracyclophanes by smiles rearrangement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Syntheses%20of%20diaza%5B1.1.1%5D%20and%20%5B1.1.1.1%5D%20paracyclophanes%20by%20smiles%20rearrangement&rft.jtitle=Tetrahedron%20letters&rft.au=Takemura,%20Hiroyuki&rft.date=2023-10-25&rft.volume=130&rft.spage=154762&rft.pages=154762-&rft.artnum=154762&rft.issn=0040-4039&rft.eissn=1873-3581&rft_id=info:doi/10.1016/j.tetlet.2023.154762&rft_dat=%3Cproquest_cross%3E3153594267%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153594267&rft_id=info:pmid/&rft_els_id=S0040403923004720&rfr_iscdi=true