Simple remedy for pitfalls in detecting negative density dependence
Conspecific negative density dependence (CNDD) is one of the processes that can maintain high species diversity by decreasing population growth rates at high densities, and can thereby favour locally less common species over common ones. But the methods for detection of CNDD can produce false signal...
Gespeichert in:
Veröffentlicht in: | Plant ecology 2024-02, Vol.225 (2), p.117-123 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 123 |
---|---|
container_issue | 2 |
container_start_page | 117 |
container_title | Plant ecology |
container_volume | 225 |
creator | Fibich, Pavel Lepš, Jan |
description | Conspecific negative density dependence (CNDD) is one of the processes that can maintain high species diversity by decreasing population growth rates at high densities, and can thereby favour locally less common species over common ones. But the methods for detection of CNDD can produce false signals, in particular, overestimate CNDD, due to error prone predictors causing regression dilution and underestimation of regression slope. Using simulated and real observed data from tropical forest plot in Barro Colorado Island, we showed that major axis regression can considerably decrease the effects of errors in predictors where classical regression methods did not succeed. The best major axis method correctly identified (1) 93% of no CNDD cases in simulated data, and (2) no CNDD in real species observed data in concordance with direct assessment using survival between censuses. The errors were mostly higher if artificial/virtual adults were introduced in the quadrats with saplings, but without adults. Although major axis methods can be used as a simple remedy for the reductions of these biases, to properly identify dynamic processes like CNDD, repeated census of the plot and identification of parent’s offspring still provide the most relevant data. |
doi_str_mv | 10.1007/s11258-023-01381-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153586451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A786800419</galeid><sourcerecordid>A786800419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-82ef97804508fa66b8b7728890abb582776ce6ac18070edea2aae6a3027b85613</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhosouK7-AU8FL166TpLNR4_L4hcseFDPIc1OS5Y2rUlX2H9v1gqCB8lhMjPvMwzzZtk1gQUBkHeREMpVAZQVQJgihTzJZoRLVnDg9DT9meLHtjzPLmLcASSM8Vm2fnXd0GIesMPtIa_7kA9urE3bxtz5fIsj2tH5JvfYmNF9Yir56MZDigP6lFi8zM4SEPHqJ86z94f7t_VTsXl5fF6vNoVlSzoWimJdSgVLDqo2QlSqkpIqVYKpKq6olMKiMJYokIBbNNSYlDOgslJcEDbPbqe5Q-g_9hhH3blosW2Nx34fNSOccSWW_Ci9-SPd9fvg03aaloIBEcBYUi0mVWNa1M7X_RiMTW-LnbO9x9ql-koqoQCWpEwAnQAb-hgD1noIrjPhoAnooxF6MkKnS-tvI7RMEJugmMS-wfC7yz_UF5xQiXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2963016033</pqid></control><display><type>article</type><title>Simple remedy for pitfalls in detecting negative density dependence</title><source>Springer Nature - Complete Springer Journals</source><creator>Fibich, Pavel ; Lepš, Jan</creator><creatorcontrib>Fibich, Pavel ; Lepš, Jan</creatorcontrib><description>Conspecific negative density dependence (CNDD) is one of the processes that can maintain high species diversity by decreasing population growth rates at high densities, and can thereby favour locally less common species over common ones. But the methods for detection of CNDD can produce false signals, in particular, overestimate CNDD, due to error prone predictors causing regression dilution and underestimation of regression slope. Using simulated and real observed data from tropical forest plot in Barro Colorado Island, we showed that major axis regression can considerably decrease the effects of errors in predictors where classical regression methods did not succeed. The best major axis method correctly identified (1) 93% of no CNDD cases in simulated data, and (2) no CNDD in real species observed data in concordance with direct assessment using survival between censuses. The errors were mostly higher if artificial/virtual adults were introduced in the quadrats with saplings, but without adults. Although major axis methods can be used as a simple remedy for the reductions of these biases, to properly identify dynamic processes like CNDD, repeated census of the plot and identification of parent’s offspring still provide the most relevant data.</description><identifier>ISSN: 1385-0237</identifier><identifier>EISSN: 1573-5052</identifier><identifier>DOI: 10.1007/s11258-023-01381-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adults ; Applied Ecology ; Biodiversity ; Biomedical and Life Sciences ; Census ; Censuses ; Community & Population Ecology ; conspecificity ; Density ; Density dependence ; Dilution ; Ecology ; Errors ; Generalized linear models ; islands ; Life Sciences ; meta-analysis ; Offspring ; Plant Ecology ; Population growth ; progeny ; Regression ; Regression analysis ; species ; Species diversity ; Survival analysis ; Terrestial Ecology ; Tropical forests</subject><ispartof>Plant ecology, 2024-02, Vol.225 (2), p.117-123</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2024 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c342t-82ef97804508fa66b8b7728890abb582776ce6ac18070edea2aae6a3027b85613</cites><orcidid>0000-0001-9066-3753 ; 0000-0002-4822-7429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11258-023-01381-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11258-023-01381-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fibich, Pavel</creatorcontrib><creatorcontrib>Lepš, Jan</creatorcontrib><title>Simple remedy for pitfalls in detecting negative density dependence</title><title>Plant ecology</title><addtitle>Plant Ecol</addtitle><description>Conspecific negative density dependence (CNDD) is one of the processes that can maintain high species diversity by decreasing population growth rates at high densities, and can thereby favour locally less common species over common ones. But the methods for detection of CNDD can produce false signals, in particular, overestimate CNDD, due to error prone predictors causing regression dilution and underestimation of regression slope. Using simulated and real observed data from tropical forest plot in Barro Colorado Island, we showed that major axis regression can considerably decrease the effects of errors in predictors where classical regression methods did not succeed. The best major axis method correctly identified (1) 93% of no CNDD cases in simulated data, and (2) no CNDD in real species observed data in concordance with direct assessment using survival between censuses. The errors were mostly higher if artificial/virtual adults were introduced in the quadrats with saplings, but without adults. Although major axis methods can be used as a simple remedy for the reductions of these biases, to properly identify dynamic processes like CNDD, repeated census of the plot and identification of parent’s offspring still provide the most relevant data.</description><subject>Adults</subject><subject>Applied Ecology</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Census</subject><subject>Censuses</subject><subject>Community & Population Ecology</subject><subject>conspecificity</subject><subject>Density</subject><subject>Density dependence</subject><subject>Dilution</subject><subject>Ecology</subject><subject>Errors</subject><subject>Generalized linear models</subject><subject>islands</subject><subject>Life Sciences</subject><subject>meta-analysis</subject><subject>Offspring</subject><subject>Plant Ecology</subject><subject>Population growth</subject><subject>progeny</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>species</subject><subject>Species diversity</subject><subject>Survival analysis</subject><subject>Terrestial Ecology</subject><subject>Tropical forests</subject><issn>1385-0237</issn><issn>1573-5052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1LxDAQhosouK7-AU8FL166TpLNR4_L4hcseFDPIc1OS5Y2rUlX2H9v1gqCB8lhMjPvMwzzZtk1gQUBkHeREMpVAZQVQJgihTzJZoRLVnDg9DT9meLHtjzPLmLcASSM8Vm2fnXd0GIesMPtIa_7kA9urE3bxtz5fIsj2tH5JvfYmNF9Yir56MZDigP6lFi8zM4SEPHqJ86z94f7t_VTsXl5fF6vNoVlSzoWimJdSgVLDqo2QlSqkpIqVYKpKq6olMKiMJYokIBbNNSYlDOgslJcEDbPbqe5Q-g_9hhH3blosW2Nx34fNSOccSWW_Ci9-SPd9fvg03aaloIBEcBYUi0mVWNa1M7X_RiMTW-LnbO9x9ql-koqoQCWpEwAnQAb-hgD1noIrjPhoAnooxF6MkKnS-tvI7RMEJugmMS-wfC7yz_UF5xQiXo</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Fibich, Pavel</creator><creator>Lepš, Jan</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7U9</scope><scope>7X2</scope><scope>88A</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9066-3753</orcidid><orcidid>https://orcid.org/0000-0002-4822-7429</orcidid></search><sort><creationdate>20240201</creationdate><title>Simple remedy for pitfalls in detecting negative density dependence</title><author>Fibich, Pavel ; Lepš, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-82ef97804508fa66b8b7728890abb582776ce6ac18070edea2aae6a3027b85613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adults</topic><topic>Applied Ecology</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Census</topic><topic>Censuses</topic><topic>Community & Population Ecology</topic><topic>conspecificity</topic><topic>Density</topic><topic>Density dependence</topic><topic>Dilution</topic><topic>Ecology</topic><topic>Errors</topic><topic>Generalized linear models</topic><topic>islands</topic><topic>Life Sciences</topic><topic>meta-analysis</topic><topic>Offspring</topic><topic>Plant Ecology</topic><topic>Population growth</topic><topic>progeny</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>species</topic><topic>Species diversity</topic><topic>Survival analysis</topic><topic>Terrestial Ecology</topic><topic>Tropical forests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fibich, Pavel</creatorcontrib><creatorcontrib>Lepš, Jan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Plant ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fibich, Pavel</au><au>Lepš, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple remedy for pitfalls in detecting negative density dependence</atitle><jtitle>Plant ecology</jtitle><stitle>Plant Ecol</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>225</volume><issue>2</issue><spage>117</spage><epage>123</epage><pages>117-123</pages><issn>1385-0237</issn><eissn>1573-5052</eissn><abstract>Conspecific negative density dependence (CNDD) is one of the processes that can maintain high species diversity by decreasing population growth rates at high densities, and can thereby favour locally less common species over common ones. But the methods for detection of CNDD can produce false signals, in particular, overestimate CNDD, due to error prone predictors causing regression dilution and underestimation of regression slope. Using simulated and real observed data from tropical forest plot in Barro Colorado Island, we showed that major axis regression can considerably decrease the effects of errors in predictors where classical regression methods did not succeed. The best major axis method correctly identified (1) 93% of no CNDD cases in simulated data, and (2) no CNDD in real species observed data in concordance with direct assessment using survival between censuses. The errors were mostly higher if artificial/virtual adults were introduced in the quadrats with saplings, but without adults. Although major axis methods can be used as a simple remedy for the reductions of these biases, to properly identify dynamic processes like CNDD, repeated census of the plot and identification of parent’s offspring still provide the most relevant data.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11258-023-01381-7</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9066-3753</orcidid><orcidid>https://orcid.org/0000-0002-4822-7429</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-0237 |
ispartof | Plant ecology, 2024-02, Vol.225 (2), p.117-123 |
issn | 1385-0237 1573-5052 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153586451 |
source | Springer Nature - Complete Springer Journals |
subjects | Adults Applied Ecology Biodiversity Biomedical and Life Sciences Census Censuses Community & Population Ecology conspecificity Density Density dependence Dilution Ecology Errors Generalized linear models islands Life Sciences meta-analysis Offspring Plant Ecology Population growth progeny Regression Regression analysis species Species diversity Survival analysis Terrestial Ecology Tropical forests |
title | Simple remedy for pitfalls in detecting negative density dependence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20remedy%20for%20pitfalls%20in%20detecting%20negative%20density%20dependence&rft.jtitle=Plant%20ecology&rft.au=Fibich,%20Pavel&rft.date=2024-02-01&rft.volume=225&rft.issue=2&rft.spage=117&rft.epage=123&rft.pages=117-123&rft.issn=1385-0237&rft.eissn=1573-5052&rft_id=info:doi/10.1007/s11258-023-01381-7&rft_dat=%3Cgale_proqu%3EA786800419%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2963016033&rft_id=info:pmid/&rft_galeid=A786800419&rfr_iscdi=true |