Microplastic Contamination of a Benthic Ecosystem in a Hydrothermal Vent
Plastic contamination is a global pervasive issue, extending from coastal areas and open oceans to polar regions and even the deep sea. Microplastic (MP) contamination in hydrothermal vents, which are known for their high biodiversity even under extreme conditions, has remained largely unexplored. H...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2024-04, Vol.58 (17), p.7636-7642 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7642 |
---|---|
container_issue | 17 |
container_start_page | 7636 |
container_title | Environmental science & technology |
container_volume | 58 |
creator | Park, Byeongyong Cho, Boongho Cho, Jaemin Kim, Taewon |
description | Plastic contamination is a global pervasive issue, extending from coastal areas and open oceans to polar regions and even the deep sea. Microplastic (MP) contamination in hydrothermal vents, which are known for their high biodiversity even under extreme conditions, has remained largely unexplored. Here, we present, for the first time, MP pollution in a deep-sea hydrothermal vent at one of the biodiversity hotspotsthe Central Indian Ridge. Not only the environment (seawater: 2.08 ± 1.04 MPs/L, surface sediments: 0.57 ± 0.19 MP/g) but also all six major benthic species investigated were polluted by MPs. MPs mainly consisted of polypropylene, polyethylene terephthalate, and polystyrene fragments ≤100 μm and were characterized as being either transparent or white in color. Remarkably, bioaccumulation and even biomagnification of microplastics were observed in the top predators of the ecosystem, such as squat lobsters (14.25 ± 4.65 MPs/individual) and vent crabs (14.00 ± 2.16 MPs/individual), since they contained more MPs than animals at lower trophic levels (e.g., mussels and snails, 1.75–6.00 average MPs/individuals). These findings reveal MP contamination of an ecosystem in a hydrothermal vent, thereby suggesting that their accumulation and magnification can occur in top-level animals, even within remote and extreme environments. |
doi_str_mv | 10.1021/acs.est.4c02811 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153575173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049830231</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-8b397b7d9c51e780af4506e202be1827b9eae86d800193a633447af022c376c03</originalsourceid><addsrcrecordid>eNqFkc9LwzAUx4MoOqdnb1LwIki3l7ymSY86phMmXlS8lTRNWUfbzKY97L83ZXMHQTwFXj7f7_vxJeSKwoQCo1Ol3cS4bhJpYJLSIzKinEHIJafHZARAMUww_jwj586tAYAhyFNyhjJmiaB8RBYvpW7tplKuK3Uws02n6rJRXWmbwBaBCh5M063811xbt3WdqYOy8eXFNm9ttzJtrargwzMX5KRQlTOX-3dM3h_nb7NFuHx9ep7dL0OFkexCmWEiMpEnmlMjJKgi4hAbBiwzVDKRJUYZGefSz56gihGjSKgCGNMoYg04Jrc7301rv3q_e1qXTpuqUo2xvUuRcuSCU4H_oxABMobJgN78Qte2bxu_yEAlEv3lqKemO8qfzLnWFOmmLWvVblMK6ZBH6vNIB_U-D6-43vv2WW3yA_8TgAfudsCgPPT8y-4byQyTTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049830231</pqid></control><display><type>article</type><title>Microplastic Contamination of a Benthic Ecosystem in a Hydrothermal Vent</title><source>ACS Publications</source><creator>Park, Byeongyong ; Cho, Boongho ; Cho, Jaemin ; Kim, Taewon</creator><creatorcontrib>Park, Byeongyong ; Cho, Boongho ; Cho, Jaemin ; Kim, Taewon</creatorcontrib><description>Plastic contamination is a global pervasive issue, extending from coastal areas and open oceans to polar regions and even the deep sea. Microplastic (MP) contamination in hydrothermal vents, which are known for their high biodiversity even under extreme conditions, has remained largely unexplored. Here, we present, for the first time, MP pollution in a deep-sea hydrothermal vent at one of the biodiversity hotspotsthe Central Indian Ridge. Not only the environment (seawater: 2.08 ± 1.04 MPs/L, surface sediments: 0.57 ± 0.19 MP/g) but also all six major benthic species investigated were polluted by MPs. MPs mainly consisted of polypropylene, polyethylene terephthalate, and polystyrene fragments ≤100 μm and were characterized as being either transparent or white in color. Remarkably, bioaccumulation and even biomagnification of microplastics were observed in the top predators of the ecosystem, such as squat lobsters (14.25 ± 4.65 MPs/individual) and vent crabs (14.00 ± 2.16 MPs/individual), since they contained more MPs than animals at lower trophic levels (e.g., mussels and snails, 1.75–6.00 average MPs/individuals). These findings reveal MP contamination of an ecosystem in a hydrothermal vent, thereby suggesting that their accumulation and magnification can occur in top-level animals, even within remote and extreme environments.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.4c02811</identifier><identifier>PMID: 38629715</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; benthic ecosystems ; benthic organisms ; Bioaccumulation ; Biodiversity ; Biodiversity hot spots ; Biological magnification ; Coastal zone ; color ; Contamination ; Crustaceans ; Deep sea ; Deep sea environments ; Ecosystems ; Extreme environments ; Hydrothermal vents ; Lobsters ; Microplastics ; Mussels ; Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants ; Oceans ; Plastic debris ; Plastic pollution ; Polar environments ; pollution ; Polyethylene terephthalate ; polyethylene terephthalates ; Polypropylene ; polypropylenes ; Polystyrene ; Polystyrene resins ; polystyrenes ; Predators ; Seawater ; Sediments ; Shellfish ; Snails ; technology ; Trophic levels</subject><ispartof>Environmental science & technology, 2024-04, Vol.58 (17), p.7636-7642</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Apr 30, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a348t-8b397b7d9c51e780af4506e202be1827b9eae86d800193a633447af022c376c03</cites><orcidid>0000-0002-4250-5950 ; 0000-0002-6691-6578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.4c02811$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.4c02811$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38629715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Byeongyong</creatorcontrib><creatorcontrib>Cho, Boongho</creatorcontrib><creatorcontrib>Cho, Jaemin</creatorcontrib><creatorcontrib>Kim, Taewon</creatorcontrib><title>Microplastic Contamination of a Benthic Ecosystem in a Hydrothermal Vent</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Plastic contamination is a global pervasive issue, extending from coastal areas and open oceans to polar regions and even the deep sea. Microplastic (MP) contamination in hydrothermal vents, which are known for their high biodiversity even under extreme conditions, has remained largely unexplored. Here, we present, for the first time, MP pollution in a deep-sea hydrothermal vent at one of the biodiversity hotspotsthe Central Indian Ridge. Not only the environment (seawater: 2.08 ± 1.04 MPs/L, surface sediments: 0.57 ± 0.19 MP/g) but also all six major benthic species investigated were polluted by MPs. MPs mainly consisted of polypropylene, polyethylene terephthalate, and polystyrene fragments ≤100 μm and were characterized as being either transparent or white in color. Remarkably, bioaccumulation and even biomagnification of microplastics were observed in the top predators of the ecosystem, such as squat lobsters (14.25 ± 4.65 MPs/individual) and vent crabs (14.00 ± 2.16 MPs/individual), since they contained more MPs than animals at lower trophic levels (e.g., mussels and snails, 1.75–6.00 average MPs/individuals). These findings reveal MP contamination of an ecosystem in a hydrothermal vent, thereby suggesting that their accumulation and magnification can occur in top-level animals, even within remote and extreme environments.</description><subject>Animals</subject><subject>benthic ecosystems</subject><subject>benthic organisms</subject><subject>Bioaccumulation</subject><subject>Biodiversity</subject><subject>Biodiversity hot spots</subject><subject>Biological magnification</subject><subject>Coastal zone</subject><subject>color</subject><subject>Contamination</subject><subject>Crustaceans</subject><subject>Deep sea</subject><subject>Deep sea environments</subject><subject>Ecosystems</subject><subject>Extreme environments</subject><subject>Hydrothermal vents</subject><subject>Lobsters</subject><subject>Microplastics</subject><subject>Mussels</subject><subject>Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants</subject><subject>Oceans</subject><subject>Plastic debris</subject><subject>Plastic pollution</subject><subject>Polar environments</subject><subject>pollution</subject><subject>Polyethylene terephthalate</subject><subject>polyethylene terephthalates</subject><subject>Polypropylene</subject><subject>polypropylenes</subject><subject>Polystyrene</subject><subject>Polystyrene resins</subject><subject>polystyrenes</subject><subject>Predators</subject><subject>Seawater</subject><subject>Sediments</subject><subject>Shellfish</subject><subject>Snails</subject><subject>technology</subject><subject>Trophic levels</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc9LwzAUx4MoOqdnb1LwIki3l7ymSY86phMmXlS8lTRNWUfbzKY97L83ZXMHQTwFXj7f7_vxJeSKwoQCo1Ol3cS4bhJpYJLSIzKinEHIJafHZARAMUww_jwj586tAYAhyFNyhjJmiaB8RBYvpW7tplKuK3Uws02n6rJRXWmbwBaBCh5M063811xbt3WdqYOy8eXFNm9ttzJtrargwzMX5KRQlTOX-3dM3h_nb7NFuHx9ep7dL0OFkexCmWEiMpEnmlMjJKgi4hAbBiwzVDKRJUYZGefSz56gihGjSKgCGNMoYg04Jrc7301rv3q_e1qXTpuqUo2xvUuRcuSCU4H_oxABMobJgN78Qte2bxu_yEAlEv3lqKemO8qfzLnWFOmmLWvVblMK6ZBH6vNIB_U-D6-43vv2WW3yA_8TgAfudsCgPPT8y-4byQyTTA</recordid><startdate>20240430</startdate><enddate>20240430</enddate><creator>Park, Byeongyong</creator><creator>Cho, Boongho</creator><creator>Cho, Jaemin</creator><creator>Kim, Taewon</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-4250-5950</orcidid><orcidid>https://orcid.org/0000-0002-6691-6578</orcidid></search><sort><creationdate>20240430</creationdate><title>Microplastic Contamination of a Benthic Ecosystem in a Hydrothermal Vent</title><author>Park, Byeongyong ; Cho, Boongho ; Cho, Jaemin ; Kim, Taewon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-8b397b7d9c51e780af4506e202be1827b9eae86d800193a633447af022c376c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>benthic ecosystems</topic><topic>benthic organisms</topic><topic>Bioaccumulation</topic><topic>Biodiversity</topic><topic>Biodiversity hot spots</topic><topic>Biological magnification</topic><topic>Coastal zone</topic><topic>color</topic><topic>Contamination</topic><topic>Crustaceans</topic><topic>Deep sea</topic><topic>Deep sea environments</topic><topic>Ecosystems</topic><topic>Extreme environments</topic><topic>Hydrothermal vents</topic><topic>Lobsters</topic><topic>Microplastics</topic><topic>Mussels</topic><topic>Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants</topic><topic>Oceans</topic><topic>Plastic debris</topic><topic>Plastic pollution</topic><topic>Polar environments</topic><topic>pollution</topic><topic>Polyethylene terephthalate</topic><topic>polyethylene terephthalates</topic><topic>Polypropylene</topic><topic>polypropylenes</topic><topic>Polystyrene</topic><topic>Polystyrene resins</topic><topic>polystyrenes</topic><topic>Predators</topic><topic>Seawater</topic><topic>Sediments</topic><topic>Shellfish</topic><topic>Snails</topic><topic>technology</topic><topic>Trophic levels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Byeongyong</creatorcontrib><creatorcontrib>Cho, Boongho</creatorcontrib><creatorcontrib>Cho, Jaemin</creatorcontrib><creatorcontrib>Kim, Taewon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Byeongyong</au><au>Cho, Boongho</au><au>Cho, Jaemin</au><au>Kim, Taewon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microplastic Contamination of a Benthic Ecosystem in a Hydrothermal Vent</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-04-30</date><risdate>2024</risdate><volume>58</volume><issue>17</issue><spage>7636</spage><epage>7642</epage><pages>7636-7642</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>Plastic contamination is a global pervasive issue, extending from coastal areas and open oceans to polar regions and even the deep sea. Microplastic (MP) contamination in hydrothermal vents, which are known for their high biodiversity even under extreme conditions, has remained largely unexplored. Here, we present, for the first time, MP pollution in a deep-sea hydrothermal vent at one of the biodiversity hotspotsthe Central Indian Ridge. Not only the environment (seawater: 2.08 ± 1.04 MPs/L, surface sediments: 0.57 ± 0.19 MP/g) but also all six major benthic species investigated were polluted by MPs. MPs mainly consisted of polypropylene, polyethylene terephthalate, and polystyrene fragments ≤100 μm and were characterized as being either transparent or white in color. Remarkably, bioaccumulation and even biomagnification of microplastics were observed in the top predators of the ecosystem, such as squat lobsters (14.25 ± 4.65 MPs/individual) and vent crabs (14.00 ± 2.16 MPs/individual), since they contained more MPs than animals at lower trophic levels (e.g., mussels and snails, 1.75–6.00 average MPs/individuals). These findings reveal MP contamination of an ecosystem in a hydrothermal vent, thereby suggesting that their accumulation and magnification can occur in top-level animals, even within remote and extreme environments.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38629715</pmid><doi>10.1021/acs.est.4c02811</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4250-5950</orcidid><orcidid>https://orcid.org/0000-0002-6691-6578</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2024-04, Vol.58 (17), p.7636-7642 |
issn | 0013-936X 1520-5851 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153575173 |
source | ACS Publications |
subjects | Animals benthic ecosystems benthic organisms Bioaccumulation Biodiversity Biodiversity hot spots Biological magnification Coastal zone color Contamination Crustaceans Deep sea Deep sea environments Ecosystems Extreme environments Hydrothermal vents Lobsters Microplastics Mussels Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants Oceans Plastic debris Plastic pollution Polar environments pollution Polyethylene terephthalate polyethylene terephthalates Polypropylene polypropylenes Polystyrene Polystyrene resins polystyrenes Predators Seawater Sediments Shellfish Snails technology Trophic levels |
title | Microplastic Contamination of a Benthic Ecosystem in a Hydrothermal Vent |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T03%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microplastic%20Contamination%20of%20a%20Benthic%20Ecosystem%20in%20a%20Hydrothermal%20Vent&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Park,%20Byeongyong&rft.date=2024-04-30&rft.volume=58&rft.issue=17&rft.spage=7636&rft.epage=7642&rft.pages=7636-7642&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.4c02811&rft_dat=%3Cproquest_cross%3E3049830231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049830231&rft_id=info:pmid/38629715&rfr_iscdi=true |