Microbiome of Zoophytophagous Biological Control Agent Nesidiocoris tenuis

Many insects are associated with endosymbionts that influence the feeding, reproduction, and distribution of their hosts. Although the small green mirid, Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae), a zoophytophagous predator that feeds on plants as well as arthropods, is a globally important...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbial ecology 2023-11, Vol.86 (4), p.2923-2933
Hauptverfasser: Owashi, Yuta, Minami, Toma, Kikuchi, Taisei, Yoshida, Akemi, Nakano, Ryohei, Kageyama, Daisuke, Adachi-Hagimori, Tetsuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2933
container_issue 4
container_start_page 2923
container_title Microbial ecology
container_volume 86
creator Owashi, Yuta
Minami, Toma
Kikuchi, Taisei
Yoshida, Akemi
Nakano, Ryohei
Kageyama, Daisuke
Adachi-Hagimori, Tetsuya
description Many insects are associated with endosymbionts that influence the feeding, reproduction, and distribution of their hosts. Although the small green mirid, Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae), a zoophytophagous predator that feeds on plants as well as arthropods, is a globally important biological control agent, its microbiome has not been sufficiently studied. In the present study, we assessed the microbiome variation in 96 N. tenuis individuals from 14 locations throughout Japan, based on amplicon sequencing of the 16S ribosomal RNA gene. Nine major bacteria associated with N. tenuis were identified: Rickettsia , two strains of Wolbachia , Spiroplasma , Providencia , Serratia , Pseudochrobactrum , Lactococcus , and Stenotrophomonas . Additionally, a diagnostic PCR analysis for three typical insect reproductive manipulators, Rickettsia , Wolbachia , and Spiroplasma , was performed on a larger sample size ( n = 360) of N. tenuis individuals; the most prevalent symbiont was Rickettsia (69.7%), followed by Wolbachia (39.2%) and Spiroplasma (6.1%). Although some symbionts were co-infected, their prevalence did not exhibit any specific tendency, such as a high frequency in specific infection combinations. The infection frequency of Rickettsia was significantly correlated with latitude and temperature, while that of Wolbachia and Spiroplasma was significantly correlated with host plants. The predominance of these bacteria and the absence of obligate symbionts suggested that the N. tenuis microbiome is typical for predatory arthropods rather than sap-feeding insects. Rickettsia and Wolbachia were vertically transmitted rather than horizontally transmitted from the prey. The functional validation of each symbiont would be warranted to develop N. tenuis as a biological control agent.
doi_str_mv 10.1007/s00248-023-02290-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153573339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2888677346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-519456fd88fb886f85507b528d0f8f5d52152be23f14885f7105bf092f28d5ff3</originalsourceid><addsrcrecordid>eNqFkbtOBCEUhonR6Hp5AQsziY3N6IEzMEy5brxm1UYTY0PmAitmdlhhpti3F10viYUWQMF3_nPgI2SfwjEFyE8CAMtkCgzjYgWkyzUyohmylMrscZ2MAAqeomByi2yH8AJAc8Fwk2xhLriUko7I9Y2tvausm-vEmeTJucXzso9bOXNDSE6ta93M1mWbTFzXe9cm45nu-uRWB9tYVztvQ9LrbrBhl2yYsg167_PcIQ_nZ_eTy3R6d3E1GU_TOgPsU06LjAvTSGkqKYWRnENecSYbMNLwhjPKWaUZGppJyU1OgVcGCmYiwo3BHXK0yl149zro0Ku5DbVu27LTcWaFlCPPEbH4F2VSgKACkUf08Bf64gbfxYdEKs6Z55iJSLEVFT8tBK-NWng7L_1SUVDvUtRKiopS1IcUtYxFB5_RQzXXzXfJl4UI4AoI8aqbaf_T-4_YN_9clqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888677346</pqid></control><display><type>article</type><title>Microbiome of Zoophytophagous Biological Control Agent Nesidiocoris tenuis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Owashi, Yuta ; Minami, Toma ; Kikuchi, Taisei ; Yoshida, Akemi ; Nakano, Ryohei ; Kageyama, Daisuke ; Adachi-Hagimori, Tetsuya</creator><creatorcontrib>Owashi, Yuta ; Minami, Toma ; Kikuchi, Taisei ; Yoshida, Akemi ; Nakano, Ryohei ; Kageyama, Daisuke ; Adachi-Hagimori, Tetsuya</creatorcontrib><description>Many insects are associated with endosymbionts that influence the feeding, reproduction, and distribution of their hosts. Although the small green mirid, Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae), a zoophytophagous predator that feeds on plants as well as arthropods, is a globally important biological control agent, its microbiome has not been sufficiently studied. In the present study, we assessed the microbiome variation in 96 N. tenuis individuals from 14 locations throughout Japan, based on amplicon sequencing of the 16S ribosomal RNA gene. Nine major bacteria associated with N. tenuis were identified: Rickettsia , two strains of Wolbachia , Spiroplasma , Providencia , Serratia , Pseudochrobactrum , Lactococcus , and Stenotrophomonas . Additionally, a diagnostic PCR analysis for three typical insect reproductive manipulators, Rickettsia , Wolbachia , and Spiroplasma , was performed on a larger sample size ( n = 360) of N. tenuis individuals; the most prevalent symbiont was Rickettsia (69.7%), followed by Wolbachia (39.2%) and Spiroplasma (6.1%). Although some symbionts were co-infected, their prevalence did not exhibit any specific tendency, such as a high frequency in specific infection combinations. The infection frequency of Rickettsia was significantly correlated with latitude and temperature, while that of Wolbachia and Spiroplasma was significantly correlated with host plants. The predominance of these bacteria and the absence of obligate symbionts suggested that the N. tenuis microbiome is typical for predatory arthropods rather than sap-feeding insects. Rickettsia and Wolbachia were vertically transmitted rather than horizontally transmitted from the prey. The functional validation of each symbiont would be warranted to develop N. tenuis as a biological control agent.</description><identifier>ISSN: 0095-3628</identifier><identifier>EISSN: 1432-184X</identifier><identifier>DOI: 10.1007/s00248-023-02290-y</identifier><identifier>PMID: 37658881</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Arthropoda ; Arthropods ; Bacteria ; Biological control ; Biological Control Agents ; Biomedical and Life Sciences ; Ecology ; Endosymbionts ; Gene sequencing ; genes ; Geoecology/Natural Processes ; Hemiptera - genetics ; High frequency ; Host plants ; Humans ; Insects ; Japan ; Lactococcus ; latitude ; Life Sciences ; Manipulators ; Microbial Ecology ; Microbiological strains ; Microbiology ; microbiome ; Microbiomes ; Microbiota ; mixed infection ; Nature Conservation ; Nesidiocoris tenuis ; Nucleotide sequence ; PCR ; Plant bacterial diseases ; polymerase chain reaction ; Predators ; Prey ; Providencia ; reproduction ; ribosomal RNA ; Rickettsia ; Rickettsia - genetics ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; sample size ; Serratia ; Spiroplasma ; Stenotrophomonas ; Symbionts ; Symbiosis ; temperature ; Water Quality/Water Pollution ; Wolbachia ; Wolbachia - genetics</subject><ispartof>Microbial ecology, 2023-11, Vol.86 (4), p.2923-2933</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c403t-519456fd88fb886f85507b528d0f8f5d52152be23f14885f7105bf092f28d5ff3</cites><orcidid>0000-0002-9026-9825 ; 0000-0003-4868-7772 ; 0000-0003-2759-9167 ; 0000-0003-0785-8694 ; 0000-0002-8405-2937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00248-023-02290-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00248-023-02290-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37658881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Owashi, Yuta</creatorcontrib><creatorcontrib>Minami, Toma</creatorcontrib><creatorcontrib>Kikuchi, Taisei</creatorcontrib><creatorcontrib>Yoshida, Akemi</creatorcontrib><creatorcontrib>Nakano, Ryohei</creatorcontrib><creatorcontrib>Kageyama, Daisuke</creatorcontrib><creatorcontrib>Adachi-Hagimori, Tetsuya</creatorcontrib><title>Microbiome of Zoophytophagous Biological Control Agent Nesidiocoris tenuis</title><title>Microbial ecology</title><addtitle>Microb Ecol</addtitle><addtitle>Microb Ecol</addtitle><description>Many insects are associated with endosymbionts that influence the feeding, reproduction, and distribution of their hosts. Although the small green mirid, Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae), a zoophytophagous predator that feeds on plants as well as arthropods, is a globally important biological control agent, its microbiome has not been sufficiently studied. In the present study, we assessed the microbiome variation in 96 N. tenuis individuals from 14 locations throughout Japan, based on amplicon sequencing of the 16S ribosomal RNA gene. Nine major bacteria associated with N. tenuis were identified: Rickettsia , two strains of Wolbachia , Spiroplasma , Providencia , Serratia , Pseudochrobactrum , Lactococcus , and Stenotrophomonas . Additionally, a diagnostic PCR analysis for three typical insect reproductive manipulators, Rickettsia , Wolbachia , and Spiroplasma , was performed on a larger sample size ( n = 360) of N. tenuis individuals; the most prevalent symbiont was Rickettsia (69.7%), followed by Wolbachia (39.2%) and Spiroplasma (6.1%). Although some symbionts were co-infected, their prevalence did not exhibit any specific tendency, such as a high frequency in specific infection combinations. The infection frequency of Rickettsia was significantly correlated with latitude and temperature, while that of Wolbachia and Spiroplasma was significantly correlated with host plants. The predominance of these bacteria and the absence of obligate symbionts suggested that the N. tenuis microbiome is typical for predatory arthropods rather than sap-feeding insects. Rickettsia and Wolbachia were vertically transmitted rather than horizontally transmitted from the prey. The functional validation of each symbiont would be warranted to develop N. tenuis as a biological control agent.</description><subject>Animals</subject><subject>Arthropoda</subject><subject>Arthropods</subject><subject>Bacteria</subject><subject>Biological control</subject><subject>Biological Control Agents</subject><subject>Biomedical and Life Sciences</subject><subject>Ecology</subject><subject>Endosymbionts</subject><subject>Gene sequencing</subject><subject>genes</subject><subject>Geoecology/Natural Processes</subject><subject>Hemiptera - genetics</subject><subject>High frequency</subject><subject>Host plants</subject><subject>Humans</subject><subject>Insects</subject><subject>Japan</subject><subject>Lactococcus</subject><subject>latitude</subject><subject>Life Sciences</subject><subject>Manipulators</subject><subject>Microbial Ecology</subject><subject>Microbiological strains</subject><subject>Microbiology</subject><subject>microbiome</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>mixed infection</subject><subject>Nature Conservation</subject><subject>Nesidiocoris tenuis</subject><subject>Nucleotide sequence</subject><subject>PCR</subject><subject>Plant bacterial diseases</subject><subject>polymerase chain reaction</subject><subject>Predators</subject><subject>Prey</subject><subject>Providencia</subject><subject>reproduction</subject><subject>ribosomal RNA</subject><subject>Rickettsia</subject><subject>Rickettsia - genetics</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>sample size</subject><subject>Serratia</subject><subject>Spiroplasma</subject><subject>Stenotrophomonas</subject><subject>Symbionts</subject><subject>Symbiosis</subject><subject>temperature</subject><subject>Water Quality/Water Pollution</subject><subject>Wolbachia</subject><subject>Wolbachia - genetics</subject><issn>0095-3628</issn><issn>1432-184X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkbtOBCEUhonR6Hp5AQsziY3N6IEzMEy5brxm1UYTY0PmAitmdlhhpti3F10viYUWQMF3_nPgI2SfwjEFyE8CAMtkCgzjYgWkyzUyohmylMrscZ2MAAqeomByi2yH8AJAc8Fwk2xhLriUko7I9Y2tvausm-vEmeTJucXzso9bOXNDSE6ta93M1mWbTFzXe9cm45nu-uRWB9tYVztvQ9LrbrBhl2yYsg167_PcIQ_nZ_eTy3R6d3E1GU_TOgPsU06LjAvTSGkqKYWRnENecSYbMNLwhjPKWaUZGppJyU1OgVcGCmYiwo3BHXK0yl149zro0Ku5DbVu27LTcWaFlCPPEbH4F2VSgKACkUf08Bf64gbfxYdEKs6Z55iJSLEVFT8tBK-NWng7L_1SUVDvUtRKiopS1IcUtYxFB5_RQzXXzXfJl4UI4AoI8aqbaf_T-4_YN_9clqo</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Owashi, Yuta</creator><creator>Minami, Toma</creator><creator>Kikuchi, Taisei</creator><creator>Yoshida, Akemi</creator><creator>Nakano, Ryohei</creator><creator>Kageyama, Daisuke</creator><creator>Adachi-Hagimori, Tetsuya</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-9026-9825</orcidid><orcidid>https://orcid.org/0000-0003-4868-7772</orcidid><orcidid>https://orcid.org/0000-0003-2759-9167</orcidid><orcidid>https://orcid.org/0000-0003-0785-8694</orcidid><orcidid>https://orcid.org/0000-0002-8405-2937</orcidid></search><sort><creationdate>20231101</creationdate><title>Microbiome of Zoophytophagous Biological Control Agent Nesidiocoris tenuis</title><author>Owashi, Yuta ; Minami, Toma ; Kikuchi, Taisei ; Yoshida, Akemi ; Nakano, Ryohei ; Kageyama, Daisuke ; Adachi-Hagimori, Tetsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-519456fd88fb886f85507b528d0f8f5d52152be23f14885f7105bf092f28d5ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Arthropoda</topic><topic>Arthropods</topic><topic>Bacteria</topic><topic>Biological control</topic><topic>Biological Control Agents</topic><topic>Biomedical and Life Sciences</topic><topic>Ecology</topic><topic>Endosymbionts</topic><topic>Gene sequencing</topic><topic>genes</topic><topic>Geoecology/Natural Processes</topic><topic>Hemiptera - genetics</topic><topic>High frequency</topic><topic>Host plants</topic><topic>Humans</topic><topic>Insects</topic><topic>Japan</topic><topic>Lactococcus</topic><topic>latitude</topic><topic>Life Sciences</topic><topic>Manipulators</topic><topic>Microbial Ecology</topic><topic>Microbiological strains</topic><topic>Microbiology</topic><topic>microbiome</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>mixed infection</topic><topic>Nature Conservation</topic><topic>Nesidiocoris tenuis</topic><topic>Nucleotide sequence</topic><topic>PCR</topic><topic>Plant bacterial diseases</topic><topic>polymerase chain reaction</topic><topic>Predators</topic><topic>Prey</topic><topic>Providencia</topic><topic>reproduction</topic><topic>ribosomal RNA</topic><topic>Rickettsia</topic><topic>Rickettsia - genetics</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>sample size</topic><topic>Serratia</topic><topic>Spiroplasma</topic><topic>Stenotrophomonas</topic><topic>Symbionts</topic><topic>Symbiosis</topic><topic>temperature</topic><topic>Water Quality/Water Pollution</topic><topic>Wolbachia</topic><topic>Wolbachia - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Owashi, Yuta</creatorcontrib><creatorcontrib>Minami, Toma</creatorcontrib><creatorcontrib>Kikuchi, Taisei</creatorcontrib><creatorcontrib>Yoshida, Akemi</creatorcontrib><creatorcontrib>Nakano, Ryohei</creatorcontrib><creatorcontrib>Kageyama, Daisuke</creatorcontrib><creatorcontrib>Adachi-Hagimori, Tetsuya</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Microbial ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Owashi, Yuta</au><au>Minami, Toma</au><au>Kikuchi, Taisei</au><au>Yoshida, Akemi</au><au>Nakano, Ryohei</au><au>Kageyama, Daisuke</au><au>Adachi-Hagimori, Tetsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbiome of Zoophytophagous Biological Control Agent Nesidiocoris tenuis</atitle><jtitle>Microbial ecology</jtitle><stitle>Microb Ecol</stitle><addtitle>Microb Ecol</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>86</volume><issue>4</issue><spage>2923</spage><epage>2933</epage><pages>2923-2933</pages><issn>0095-3628</issn><eissn>1432-184X</eissn><abstract>Many insects are associated with endosymbionts that influence the feeding, reproduction, and distribution of their hosts. Although the small green mirid, Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae), a zoophytophagous predator that feeds on plants as well as arthropods, is a globally important biological control agent, its microbiome has not been sufficiently studied. In the present study, we assessed the microbiome variation in 96 N. tenuis individuals from 14 locations throughout Japan, based on amplicon sequencing of the 16S ribosomal RNA gene. Nine major bacteria associated with N. tenuis were identified: Rickettsia , two strains of Wolbachia , Spiroplasma , Providencia , Serratia , Pseudochrobactrum , Lactococcus , and Stenotrophomonas . Additionally, a diagnostic PCR analysis for three typical insect reproductive manipulators, Rickettsia , Wolbachia , and Spiroplasma , was performed on a larger sample size ( n = 360) of N. tenuis individuals; the most prevalent symbiont was Rickettsia (69.7%), followed by Wolbachia (39.2%) and Spiroplasma (6.1%). Although some symbionts were co-infected, their prevalence did not exhibit any specific tendency, such as a high frequency in specific infection combinations. The infection frequency of Rickettsia was significantly correlated with latitude and temperature, while that of Wolbachia and Spiroplasma was significantly correlated with host plants. The predominance of these bacteria and the absence of obligate symbionts suggested that the N. tenuis microbiome is typical for predatory arthropods rather than sap-feeding insects. Rickettsia and Wolbachia were vertically transmitted rather than horizontally transmitted from the prey. The functional validation of each symbiont would be warranted to develop N. tenuis as a biological control agent.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>37658881</pmid><doi>10.1007/s00248-023-02290-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9026-9825</orcidid><orcidid>https://orcid.org/0000-0003-4868-7772</orcidid><orcidid>https://orcid.org/0000-0003-2759-9167</orcidid><orcidid>https://orcid.org/0000-0003-0785-8694</orcidid><orcidid>https://orcid.org/0000-0002-8405-2937</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0095-3628
ispartof Microbial ecology, 2023-11, Vol.86 (4), p.2923-2933
issn 0095-3628
1432-184X
language eng
recordid cdi_proquest_miscellaneous_3153573339
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animals
Arthropoda
Arthropods
Bacteria
Biological control
Biological Control Agents
Biomedical and Life Sciences
Ecology
Endosymbionts
Gene sequencing
genes
Geoecology/Natural Processes
Hemiptera - genetics
High frequency
Host plants
Humans
Insects
Japan
Lactococcus
latitude
Life Sciences
Manipulators
Microbial Ecology
Microbiological strains
Microbiology
microbiome
Microbiomes
Microbiota
mixed infection
Nature Conservation
Nesidiocoris tenuis
Nucleotide sequence
PCR
Plant bacterial diseases
polymerase chain reaction
Predators
Prey
Providencia
reproduction
ribosomal RNA
Rickettsia
Rickettsia - genetics
RNA, Ribosomal, 16S - genetics
rRNA 16S
sample size
Serratia
Spiroplasma
Stenotrophomonas
Symbionts
Symbiosis
temperature
Water Quality/Water Pollution
Wolbachia
Wolbachia - genetics
title Microbiome of Zoophytophagous Biological Control Agent Nesidiocoris tenuis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbiome%20of%20Zoophytophagous%20Biological%20Control%20Agent%20Nesidiocoris%20tenuis&rft.jtitle=Microbial%20ecology&rft.au=Owashi,%20Yuta&rft.date=2023-11-01&rft.volume=86&rft.issue=4&rft.spage=2923&rft.epage=2933&rft.pages=2923-2933&rft.issn=0095-3628&rft.eissn=1432-184X&rft_id=info:doi/10.1007/s00248-023-02290-y&rft_dat=%3Cproquest_cross%3E2888677346%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2888677346&rft_id=info:pmid/37658881&rfr_iscdi=true