Microbiome of Zoophytophagous Biological Control Agent Nesidiocoris tenuis
Many insects are associated with endosymbionts that influence the feeding, reproduction, and distribution of their hosts. Although the small green mirid, Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae), a zoophytophagous predator that feeds on plants as well as arthropods, is a globally important...
Gespeichert in:
Veröffentlicht in: | Microbial ecology 2023-11, Vol.86 (4), p.2923-2933 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2933 |
---|---|
container_issue | 4 |
container_start_page | 2923 |
container_title | Microbial ecology |
container_volume | 86 |
creator | Owashi, Yuta Minami, Toma Kikuchi, Taisei Yoshida, Akemi Nakano, Ryohei Kageyama, Daisuke Adachi-Hagimori, Tetsuya |
description | Many insects are associated with endosymbionts that influence the feeding, reproduction, and distribution of their hosts. Although the small green mirid,
Nesidiocoris tenuis
(Reuter) (Hemiptera: Miridae), a zoophytophagous predator that feeds on plants as well as arthropods, is a globally important biological control agent, its microbiome has not been sufficiently studied. In the present study, we assessed the microbiome variation in 96
N. tenuis
individuals from 14 locations throughout Japan, based on amplicon sequencing of the 16S ribosomal RNA gene. Nine major bacteria associated with
N. tenuis
were identified:
Rickettsia
, two strains of
Wolbachia
,
Spiroplasma
,
Providencia
,
Serratia
,
Pseudochrobactrum
,
Lactococcus
, and
Stenotrophomonas
. Additionally, a diagnostic PCR analysis for three typical insect reproductive manipulators,
Rickettsia
,
Wolbachia
, and
Spiroplasma
, was performed on a larger sample size (
n
= 360) of
N. tenuis
individuals; the most prevalent symbiont was
Rickettsia
(69.7%), followed by
Wolbachia
(39.2%) and
Spiroplasma
(6.1%). Although some symbionts were co-infected, their prevalence did not exhibit any specific tendency, such as a high frequency in specific infection combinations. The infection frequency of
Rickettsia
was significantly correlated with latitude and temperature, while that of
Wolbachia
and
Spiroplasma
was significantly correlated with host plants. The predominance of these bacteria and the absence of obligate symbionts suggested that the
N. tenuis
microbiome is typical for predatory arthropods rather than sap-feeding insects.
Rickettsia
and
Wolbachia
were vertically transmitted rather than horizontally transmitted from the prey. The functional validation of each symbiont would be warranted to develop
N. tenuis
as a biological control agent. |
doi_str_mv | 10.1007/s00248-023-02290-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153573339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2888677346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-519456fd88fb886f85507b528d0f8f5d52152be23f14885f7105bf092f28d5ff3</originalsourceid><addsrcrecordid>eNqFkbtOBCEUhonR6Hp5AQsziY3N6IEzMEy5brxm1UYTY0PmAitmdlhhpti3F10viYUWQMF3_nPgI2SfwjEFyE8CAMtkCgzjYgWkyzUyohmylMrscZ2MAAqeomByi2yH8AJAc8Fwk2xhLriUko7I9Y2tvausm-vEmeTJucXzso9bOXNDSE6ta93M1mWbTFzXe9cm45nu-uRWB9tYVztvQ9LrbrBhl2yYsg167_PcIQ_nZ_eTy3R6d3E1GU_TOgPsU06LjAvTSGkqKYWRnENecSYbMNLwhjPKWaUZGppJyU1OgVcGCmYiwo3BHXK0yl149zro0Ku5DbVu27LTcWaFlCPPEbH4F2VSgKACkUf08Bf64gbfxYdEKs6Z55iJSLEVFT8tBK-NWng7L_1SUVDvUtRKiopS1IcUtYxFB5_RQzXXzXfJl4UI4AoI8aqbaf_T-4_YN_9clqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888677346</pqid></control><display><type>article</type><title>Microbiome of Zoophytophagous Biological Control Agent Nesidiocoris tenuis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Owashi, Yuta ; Minami, Toma ; Kikuchi, Taisei ; Yoshida, Akemi ; Nakano, Ryohei ; Kageyama, Daisuke ; Adachi-Hagimori, Tetsuya</creator><creatorcontrib>Owashi, Yuta ; Minami, Toma ; Kikuchi, Taisei ; Yoshida, Akemi ; Nakano, Ryohei ; Kageyama, Daisuke ; Adachi-Hagimori, Tetsuya</creatorcontrib><description>Many insects are associated with endosymbionts that influence the feeding, reproduction, and distribution of their hosts. Although the small green mirid,
Nesidiocoris tenuis
(Reuter) (Hemiptera: Miridae), a zoophytophagous predator that feeds on plants as well as arthropods, is a globally important biological control agent, its microbiome has not been sufficiently studied. In the present study, we assessed the microbiome variation in 96
N. tenuis
individuals from 14 locations throughout Japan, based on amplicon sequencing of the 16S ribosomal RNA gene. Nine major bacteria associated with
N. tenuis
were identified:
Rickettsia
, two strains of
Wolbachia
,
Spiroplasma
,
Providencia
,
Serratia
,
Pseudochrobactrum
,
Lactococcus
, and
Stenotrophomonas
. Additionally, a diagnostic PCR analysis for three typical insect reproductive manipulators,
Rickettsia
,
Wolbachia
, and
Spiroplasma
, was performed on a larger sample size (
n
= 360) of
N. tenuis
individuals; the most prevalent symbiont was
Rickettsia
(69.7%), followed by
Wolbachia
(39.2%) and
Spiroplasma
(6.1%). Although some symbionts were co-infected, their prevalence did not exhibit any specific tendency, such as a high frequency in specific infection combinations. The infection frequency of
Rickettsia
was significantly correlated with latitude and temperature, while that of
Wolbachia
and
Spiroplasma
was significantly correlated with host plants. The predominance of these bacteria and the absence of obligate symbionts suggested that the
N. tenuis
microbiome is typical for predatory arthropods rather than sap-feeding insects.
Rickettsia
and
Wolbachia
were vertically transmitted rather than horizontally transmitted from the prey. The functional validation of each symbiont would be warranted to develop
N. tenuis
as a biological control agent.</description><identifier>ISSN: 0095-3628</identifier><identifier>EISSN: 1432-184X</identifier><identifier>DOI: 10.1007/s00248-023-02290-y</identifier><identifier>PMID: 37658881</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Arthropoda ; Arthropods ; Bacteria ; Biological control ; Biological Control Agents ; Biomedical and Life Sciences ; Ecology ; Endosymbionts ; Gene sequencing ; genes ; Geoecology/Natural Processes ; Hemiptera - genetics ; High frequency ; Host plants ; Humans ; Insects ; Japan ; Lactococcus ; latitude ; Life Sciences ; Manipulators ; Microbial Ecology ; Microbiological strains ; Microbiology ; microbiome ; Microbiomes ; Microbiota ; mixed infection ; Nature Conservation ; Nesidiocoris tenuis ; Nucleotide sequence ; PCR ; Plant bacterial diseases ; polymerase chain reaction ; Predators ; Prey ; Providencia ; reproduction ; ribosomal RNA ; Rickettsia ; Rickettsia - genetics ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; sample size ; Serratia ; Spiroplasma ; Stenotrophomonas ; Symbionts ; Symbiosis ; temperature ; Water Quality/Water Pollution ; Wolbachia ; Wolbachia - genetics</subject><ispartof>Microbial ecology, 2023-11, Vol.86 (4), p.2923-2933</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c403t-519456fd88fb886f85507b528d0f8f5d52152be23f14885f7105bf092f28d5ff3</cites><orcidid>0000-0002-9026-9825 ; 0000-0003-4868-7772 ; 0000-0003-2759-9167 ; 0000-0003-0785-8694 ; 0000-0002-8405-2937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00248-023-02290-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00248-023-02290-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37658881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Owashi, Yuta</creatorcontrib><creatorcontrib>Minami, Toma</creatorcontrib><creatorcontrib>Kikuchi, Taisei</creatorcontrib><creatorcontrib>Yoshida, Akemi</creatorcontrib><creatorcontrib>Nakano, Ryohei</creatorcontrib><creatorcontrib>Kageyama, Daisuke</creatorcontrib><creatorcontrib>Adachi-Hagimori, Tetsuya</creatorcontrib><title>Microbiome of Zoophytophagous Biological Control Agent Nesidiocoris tenuis</title><title>Microbial ecology</title><addtitle>Microb Ecol</addtitle><addtitle>Microb Ecol</addtitle><description>Many insects are associated with endosymbionts that influence the feeding, reproduction, and distribution of their hosts. Although the small green mirid,
Nesidiocoris tenuis
(Reuter) (Hemiptera: Miridae), a zoophytophagous predator that feeds on plants as well as arthropods, is a globally important biological control agent, its microbiome has not been sufficiently studied. In the present study, we assessed the microbiome variation in 96
N. tenuis
individuals from 14 locations throughout Japan, based on amplicon sequencing of the 16S ribosomal RNA gene. Nine major bacteria associated with
N. tenuis
were identified:
Rickettsia
, two strains of
Wolbachia
,
Spiroplasma
,
Providencia
,
Serratia
,
Pseudochrobactrum
,
Lactococcus
, and
Stenotrophomonas
. Additionally, a diagnostic PCR analysis for three typical insect reproductive manipulators,
Rickettsia
,
Wolbachia
, and
Spiroplasma
, was performed on a larger sample size (
n
= 360) of
N. tenuis
individuals; the most prevalent symbiont was
Rickettsia
(69.7%), followed by
Wolbachia
(39.2%) and
Spiroplasma
(6.1%). Although some symbionts were co-infected, their prevalence did not exhibit any specific tendency, such as a high frequency in specific infection combinations. The infection frequency of
Rickettsia
was significantly correlated with latitude and temperature, while that of
Wolbachia
and
Spiroplasma
was significantly correlated with host plants. The predominance of these bacteria and the absence of obligate symbionts suggested that the
N. tenuis
microbiome is typical for predatory arthropods rather than sap-feeding insects.
Rickettsia
and
Wolbachia
were vertically transmitted rather than horizontally transmitted from the prey. The functional validation of each symbiont would be warranted to develop
N. tenuis
as a biological control agent.</description><subject>Animals</subject><subject>Arthropoda</subject><subject>Arthropods</subject><subject>Bacteria</subject><subject>Biological control</subject><subject>Biological Control Agents</subject><subject>Biomedical and Life Sciences</subject><subject>Ecology</subject><subject>Endosymbionts</subject><subject>Gene sequencing</subject><subject>genes</subject><subject>Geoecology/Natural Processes</subject><subject>Hemiptera - genetics</subject><subject>High frequency</subject><subject>Host plants</subject><subject>Humans</subject><subject>Insects</subject><subject>Japan</subject><subject>Lactococcus</subject><subject>latitude</subject><subject>Life Sciences</subject><subject>Manipulators</subject><subject>Microbial Ecology</subject><subject>Microbiological strains</subject><subject>Microbiology</subject><subject>microbiome</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>mixed infection</subject><subject>Nature Conservation</subject><subject>Nesidiocoris tenuis</subject><subject>Nucleotide sequence</subject><subject>PCR</subject><subject>Plant bacterial diseases</subject><subject>polymerase chain reaction</subject><subject>Predators</subject><subject>Prey</subject><subject>Providencia</subject><subject>reproduction</subject><subject>ribosomal RNA</subject><subject>Rickettsia</subject><subject>Rickettsia - genetics</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>sample size</subject><subject>Serratia</subject><subject>Spiroplasma</subject><subject>Stenotrophomonas</subject><subject>Symbionts</subject><subject>Symbiosis</subject><subject>temperature</subject><subject>Water Quality/Water Pollution</subject><subject>Wolbachia</subject><subject>Wolbachia - genetics</subject><issn>0095-3628</issn><issn>1432-184X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkbtOBCEUhonR6Hp5AQsziY3N6IEzMEy5brxm1UYTY0PmAitmdlhhpti3F10viYUWQMF3_nPgI2SfwjEFyE8CAMtkCgzjYgWkyzUyohmylMrscZ2MAAqeomByi2yH8AJAc8Fwk2xhLriUko7I9Y2tvausm-vEmeTJucXzso9bOXNDSE6ta93M1mWbTFzXe9cm45nu-uRWB9tYVztvQ9LrbrBhl2yYsg167_PcIQ_nZ_eTy3R6d3E1GU_TOgPsU06LjAvTSGkqKYWRnENecSYbMNLwhjPKWaUZGppJyU1OgVcGCmYiwo3BHXK0yl149zro0Ku5DbVu27LTcWaFlCPPEbH4F2VSgKACkUf08Bf64gbfxYdEKs6Z55iJSLEVFT8tBK-NWng7L_1SUVDvUtRKiopS1IcUtYxFB5_RQzXXzXfJl4UI4AoI8aqbaf_T-4_YN_9clqo</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Owashi, Yuta</creator><creator>Minami, Toma</creator><creator>Kikuchi, Taisei</creator><creator>Yoshida, Akemi</creator><creator>Nakano, Ryohei</creator><creator>Kageyama, Daisuke</creator><creator>Adachi-Hagimori, Tetsuya</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-9026-9825</orcidid><orcidid>https://orcid.org/0000-0003-4868-7772</orcidid><orcidid>https://orcid.org/0000-0003-2759-9167</orcidid><orcidid>https://orcid.org/0000-0003-0785-8694</orcidid><orcidid>https://orcid.org/0000-0002-8405-2937</orcidid></search><sort><creationdate>20231101</creationdate><title>Microbiome of Zoophytophagous Biological Control Agent Nesidiocoris tenuis</title><author>Owashi, Yuta ; Minami, Toma ; Kikuchi, Taisei ; Yoshida, Akemi ; Nakano, Ryohei ; Kageyama, Daisuke ; Adachi-Hagimori, Tetsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-519456fd88fb886f85507b528d0f8f5d52152be23f14885f7105bf092f28d5ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Arthropoda</topic><topic>Arthropods</topic><topic>Bacteria</topic><topic>Biological control</topic><topic>Biological Control Agents</topic><topic>Biomedical and Life Sciences</topic><topic>Ecology</topic><topic>Endosymbionts</topic><topic>Gene sequencing</topic><topic>genes</topic><topic>Geoecology/Natural Processes</topic><topic>Hemiptera - genetics</topic><topic>High frequency</topic><topic>Host plants</topic><topic>Humans</topic><topic>Insects</topic><topic>Japan</topic><topic>Lactococcus</topic><topic>latitude</topic><topic>Life Sciences</topic><topic>Manipulators</topic><topic>Microbial Ecology</topic><topic>Microbiological strains</topic><topic>Microbiology</topic><topic>microbiome</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>mixed infection</topic><topic>Nature Conservation</topic><topic>Nesidiocoris tenuis</topic><topic>Nucleotide sequence</topic><topic>PCR</topic><topic>Plant bacterial diseases</topic><topic>polymerase chain reaction</topic><topic>Predators</topic><topic>Prey</topic><topic>Providencia</topic><topic>reproduction</topic><topic>ribosomal RNA</topic><topic>Rickettsia</topic><topic>Rickettsia - genetics</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>sample size</topic><topic>Serratia</topic><topic>Spiroplasma</topic><topic>Stenotrophomonas</topic><topic>Symbionts</topic><topic>Symbiosis</topic><topic>temperature</topic><topic>Water Quality/Water Pollution</topic><topic>Wolbachia</topic><topic>Wolbachia - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Owashi, Yuta</creatorcontrib><creatorcontrib>Minami, Toma</creatorcontrib><creatorcontrib>Kikuchi, Taisei</creatorcontrib><creatorcontrib>Yoshida, Akemi</creatorcontrib><creatorcontrib>Nakano, Ryohei</creatorcontrib><creatorcontrib>Kageyama, Daisuke</creatorcontrib><creatorcontrib>Adachi-Hagimori, Tetsuya</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Microbial ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Owashi, Yuta</au><au>Minami, Toma</au><au>Kikuchi, Taisei</au><au>Yoshida, Akemi</au><au>Nakano, Ryohei</au><au>Kageyama, Daisuke</au><au>Adachi-Hagimori, Tetsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbiome of Zoophytophagous Biological Control Agent Nesidiocoris tenuis</atitle><jtitle>Microbial ecology</jtitle><stitle>Microb Ecol</stitle><addtitle>Microb Ecol</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>86</volume><issue>4</issue><spage>2923</spage><epage>2933</epage><pages>2923-2933</pages><issn>0095-3628</issn><eissn>1432-184X</eissn><abstract>Many insects are associated with endosymbionts that influence the feeding, reproduction, and distribution of their hosts. Although the small green mirid,
Nesidiocoris tenuis
(Reuter) (Hemiptera: Miridae), a zoophytophagous predator that feeds on plants as well as arthropods, is a globally important biological control agent, its microbiome has not been sufficiently studied. In the present study, we assessed the microbiome variation in 96
N. tenuis
individuals from 14 locations throughout Japan, based on amplicon sequencing of the 16S ribosomal RNA gene. Nine major bacteria associated with
N. tenuis
were identified:
Rickettsia
, two strains of
Wolbachia
,
Spiroplasma
,
Providencia
,
Serratia
,
Pseudochrobactrum
,
Lactococcus
, and
Stenotrophomonas
. Additionally, a diagnostic PCR analysis for three typical insect reproductive manipulators,
Rickettsia
,
Wolbachia
, and
Spiroplasma
, was performed on a larger sample size (
n
= 360) of
N. tenuis
individuals; the most prevalent symbiont was
Rickettsia
(69.7%), followed by
Wolbachia
(39.2%) and
Spiroplasma
(6.1%). Although some symbionts were co-infected, their prevalence did not exhibit any specific tendency, such as a high frequency in specific infection combinations. The infection frequency of
Rickettsia
was significantly correlated with latitude and temperature, while that of
Wolbachia
and
Spiroplasma
was significantly correlated with host plants. The predominance of these bacteria and the absence of obligate symbionts suggested that the
N. tenuis
microbiome is typical for predatory arthropods rather than sap-feeding insects.
Rickettsia
and
Wolbachia
were vertically transmitted rather than horizontally transmitted from the prey. The functional validation of each symbiont would be warranted to develop
N. tenuis
as a biological control agent.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>37658881</pmid><doi>10.1007/s00248-023-02290-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9026-9825</orcidid><orcidid>https://orcid.org/0000-0003-4868-7772</orcidid><orcidid>https://orcid.org/0000-0003-2759-9167</orcidid><orcidid>https://orcid.org/0000-0003-0785-8694</orcidid><orcidid>https://orcid.org/0000-0002-8405-2937</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-3628 |
ispartof | Microbial ecology, 2023-11, Vol.86 (4), p.2923-2933 |
issn | 0095-3628 1432-184X |
language | eng |
recordid | cdi_proquest_miscellaneous_3153573339 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Animals Arthropoda Arthropods Bacteria Biological control Biological Control Agents Biomedical and Life Sciences Ecology Endosymbionts Gene sequencing genes Geoecology/Natural Processes Hemiptera - genetics High frequency Host plants Humans Insects Japan Lactococcus latitude Life Sciences Manipulators Microbial Ecology Microbiological strains Microbiology microbiome Microbiomes Microbiota mixed infection Nature Conservation Nesidiocoris tenuis Nucleotide sequence PCR Plant bacterial diseases polymerase chain reaction Predators Prey Providencia reproduction ribosomal RNA Rickettsia Rickettsia - genetics RNA, Ribosomal, 16S - genetics rRNA 16S sample size Serratia Spiroplasma Stenotrophomonas Symbionts Symbiosis temperature Water Quality/Water Pollution Wolbachia Wolbachia - genetics |
title | Microbiome of Zoophytophagous Biological Control Agent Nesidiocoris tenuis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbiome%20of%20Zoophytophagous%20Biological%20Control%20Agent%20Nesidiocoris%20tenuis&rft.jtitle=Microbial%20ecology&rft.au=Owashi,%20Yuta&rft.date=2023-11-01&rft.volume=86&rft.issue=4&rft.spage=2923&rft.epage=2933&rft.pages=2923-2933&rft.issn=0095-3628&rft.eissn=1432-184X&rft_id=info:doi/10.1007/s00248-023-02290-y&rft_dat=%3Cproquest_cross%3E2888677346%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2888677346&rft_id=info:pmid/37658881&rfr_iscdi=true |