Transcriptome and metabolome integrated analysis reveals the wax biosynthesis mechanism of Allium cepa L

•The primary component of onion epidermal wax was 16-Hentriacontanone.•Twenty-one key genes that may related to wax synthesis and metabolism were identified. Cuticle waxes play a crucial role in protecting plants from biotic and abiotic stresses, and their biosynthetic mechanisms are well understood...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientia horticulturae 2024-07, Vol.333, p.113251, Article 113251
Hauptverfasser: Zhu, Mingzhao, Xing, Jiayi, Wang, Yongqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 113251
container_title Scientia horticulturae
container_volume 333
creator Zhu, Mingzhao
Xing, Jiayi
Wang, Yongqin
description •The primary component of onion epidermal wax was 16-Hentriacontanone.•Twenty-one key genes that may related to wax synthesis and metabolism were identified. Cuticle waxes play a crucial role in protecting plants from biotic and abiotic stresses, and their biosynthetic mechanisms are well understood in a variety of crops. However, the regulatory mechanism of cuticular wax synthesis in Allium cepa has not been fully understood. In this study, we conducted an integrated analysis of the transcriptome and metabolome to elucidate the wax biosynthesis mechanism of A. cepa using the wild type, designated as WT1, and glossy mutant type, known as glo1, plants of A. cepa. The results revealed that the total wax content of WT1 was higher than that of glo1, with 16-Hentriacontanone identified as the main component of the wax. Transcriptomics analysis showed 384 up-regulated genes and 412 down-regulated genes in glo1 compared with WT1. Through Kyoto Encyclopedia of Genes and Genomes analysis, weighted gene co-expression network analysis, and joint analysis of transcriptome and metabolome data, we identified 21 key genes related to wax synthesis and metabolism. This research provides a comprehensive landscape of the transcriptome and metabolome, shedding light on the molecular mechanisms of cuticular wax synthesis in A. cepa. Furthermore, it lays the foundation for the development of potential breeding strategies in the future. [Display omitted]
doi_str_mv 10.1016/j.scienta.2024.113251
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153572813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304423824004102</els_id><sourcerecordid>3153572813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-be1863e2f7ac4dc8b6555c9bf074b701ee7d2c074f53054560e37f66ce3ced2a3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwE5B85JLgR5zHCVUVL6kSl3K2HGdDXSVxsN1C_z2O0jun1Wi_mdUOQveUpJTQ_HGfem1gCCplhGUppZwJeoEWtCyqJBLlJVoQTrIkY7y8Rjfe7wkhlGbVAu22Tg1eOzMG2wNWQ4N7CKq23STNEODLqQBN3Kju5I3HDo6gOo_DDvCP-sW1sf40RDUte9A7NRjfY9viVdeZQ481jApvbtFVG21wd55L9PnyvF2_JZuP1_f1apNoVpGQ1EDLnANrC6WzRpd1LoTQVd2SIqsLQgGKhukoWsGJyEROgBdtnmvgGhqm-BI9zLmjs98H8EH2xmvoOjWAPXjJqeCiYCXlERUzqp313kErR2d65U6SEjk1K_fy3KycmpVzs9H3NPsg_nE04GYq3jcOdJCNNf8k_AGA4IZr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153572813</pqid></control><display><type>article</type><title>Transcriptome and metabolome integrated analysis reveals the wax biosynthesis mechanism of Allium cepa L</title><source>Elsevier ScienceDirect Journals</source><creator>Zhu, Mingzhao ; Xing, Jiayi ; Wang, Yongqin</creator><creatorcontrib>Zhu, Mingzhao ; Xing, Jiayi ; Wang, Yongqin</creatorcontrib><description>•The primary component of onion epidermal wax was 16-Hentriacontanone.•Twenty-one key genes that may related to wax synthesis and metabolism were identified. Cuticle waxes play a crucial role in protecting plants from biotic and abiotic stresses, and their biosynthetic mechanisms are well understood in a variety of crops. However, the regulatory mechanism of cuticular wax synthesis in Allium cepa has not been fully understood. In this study, we conducted an integrated analysis of the transcriptome and metabolome to elucidate the wax biosynthesis mechanism of A. cepa using the wild type, designated as WT1, and glossy mutant type, known as glo1, plants of A. cepa. The results revealed that the total wax content of WT1 was higher than that of glo1, with 16-Hentriacontanone identified as the main component of the wax. Transcriptomics analysis showed 384 up-regulated genes and 412 down-regulated genes in glo1 compared with WT1. Through Kyoto Encyclopedia of Genes and Genomes analysis, weighted gene co-expression network analysis, and joint analysis of transcriptome and metabolome data, we identified 21 key genes related to wax synthesis and metabolism. This research provides a comprehensive landscape of the transcriptome and metabolome, shedding light on the molecular mechanisms of cuticular wax synthesis in A. cepa. Furthermore, it lays the foundation for the development of potential breeding strategies in the future. [Display omitted]</description><identifier>ISSN: 0304-4238</identifier><identifier>EISSN: 1879-1018</identifier><identifier>DOI: 10.1016/j.scienta.2024.113251</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Allium cepa ; Allium cepa L ; biosynthesis ; epicuticular wax ; genes ; Metabolome ; mutants ; transcriptome ; Transcriptomics ; Wax biosynthesis</subject><ispartof>Scientia horticulturae, 2024-07, Vol.333, p.113251, Article 113251</ispartof><rights>2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c290t-be1863e2f7ac4dc8b6555c9bf074b701ee7d2c074f53054560e37f66ce3ced2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304423824004102$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhu, Mingzhao</creatorcontrib><creatorcontrib>Xing, Jiayi</creatorcontrib><creatorcontrib>Wang, Yongqin</creatorcontrib><title>Transcriptome and metabolome integrated analysis reveals the wax biosynthesis mechanism of Allium cepa L</title><title>Scientia horticulturae</title><description>•The primary component of onion epidermal wax was 16-Hentriacontanone.•Twenty-one key genes that may related to wax synthesis and metabolism were identified. Cuticle waxes play a crucial role in protecting plants from biotic and abiotic stresses, and their biosynthetic mechanisms are well understood in a variety of crops. However, the regulatory mechanism of cuticular wax synthesis in Allium cepa has not been fully understood. In this study, we conducted an integrated analysis of the transcriptome and metabolome to elucidate the wax biosynthesis mechanism of A. cepa using the wild type, designated as WT1, and glossy mutant type, known as glo1, plants of A. cepa. The results revealed that the total wax content of WT1 was higher than that of glo1, with 16-Hentriacontanone identified as the main component of the wax. Transcriptomics analysis showed 384 up-regulated genes and 412 down-regulated genes in glo1 compared with WT1. Through Kyoto Encyclopedia of Genes and Genomes analysis, weighted gene co-expression network analysis, and joint analysis of transcriptome and metabolome data, we identified 21 key genes related to wax synthesis and metabolism. This research provides a comprehensive landscape of the transcriptome and metabolome, shedding light on the molecular mechanisms of cuticular wax synthesis in A. cepa. Furthermore, it lays the foundation for the development of potential breeding strategies in the future. [Display omitted]</description><subject>Allium cepa</subject><subject>Allium cepa L</subject><subject>biosynthesis</subject><subject>epicuticular wax</subject><subject>genes</subject><subject>Metabolome</subject><subject>mutants</subject><subject>transcriptome</subject><subject>Transcriptomics</subject><subject>Wax biosynthesis</subject><issn>0304-4238</issn><issn>1879-1018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwE5B85JLgR5zHCVUVL6kSl3K2HGdDXSVxsN1C_z2O0jun1Wi_mdUOQveUpJTQ_HGfem1gCCplhGUppZwJeoEWtCyqJBLlJVoQTrIkY7y8Rjfe7wkhlGbVAu22Tg1eOzMG2wNWQ4N7CKq23STNEODLqQBN3Kju5I3HDo6gOo_DDvCP-sW1sf40RDUte9A7NRjfY9viVdeZQ481jApvbtFVG21wd55L9PnyvF2_JZuP1_f1apNoVpGQ1EDLnANrC6WzRpd1LoTQVd2SIqsLQgGKhukoWsGJyEROgBdtnmvgGhqm-BI9zLmjs98H8EH2xmvoOjWAPXjJqeCiYCXlERUzqp313kErR2d65U6SEjk1K_fy3KycmpVzs9H3NPsg_nE04GYq3jcOdJCNNf8k_AGA4IZr</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Zhu, Mingzhao</creator><creator>Xing, Jiayi</creator><creator>Wang, Yongqin</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240701</creationdate><title>Transcriptome and metabolome integrated analysis reveals the wax biosynthesis mechanism of Allium cepa L</title><author>Zhu, Mingzhao ; Xing, Jiayi ; Wang, Yongqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-be1863e2f7ac4dc8b6555c9bf074b701ee7d2c074f53054560e37f66ce3ced2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Allium cepa</topic><topic>Allium cepa L</topic><topic>biosynthesis</topic><topic>epicuticular wax</topic><topic>genes</topic><topic>Metabolome</topic><topic>mutants</topic><topic>transcriptome</topic><topic>Transcriptomics</topic><topic>Wax biosynthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Mingzhao</creatorcontrib><creatorcontrib>Xing, Jiayi</creatorcontrib><creatorcontrib>Wang, Yongqin</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Scientia horticulturae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Mingzhao</au><au>Xing, Jiayi</au><au>Wang, Yongqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptome and metabolome integrated analysis reveals the wax biosynthesis mechanism of Allium cepa L</atitle><jtitle>Scientia horticulturae</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>333</volume><spage>113251</spage><pages>113251-</pages><artnum>113251</artnum><issn>0304-4238</issn><eissn>1879-1018</eissn><abstract>•The primary component of onion epidermal wax was 16-Hentriacontanone.•Twenty-one key genes that may related to wax synthesis and metabolism were identified. Cuticle waxes play a crucial role in protecting plants from biotic and abiotic stresses, and their biosynthetic mechanisms are well understood in a variety of crops. However, the regulatory mechanism of cuticular wax synthesis in Allium cepa has not been fully understood. In this study, we conducted an integrated analysis of the transcriptome and metabolome to elucidate the wax biosynthesis mechanism of A. cepa using the wild type, designated as WT1, and glossy mutant type, known as glo1, plants of A. cepa. The results revealed that the total wax content of WT1 was higher than that of glo1, with 16-Hentriacontanone identified as the main component of the wax. Transcriptomics analysis showed 384 up-regulated genes and 412 down-regulated genes in glo1 compared with WT1. Through Kyoto Encyclopedia of Genes and Genomes analysis, weighted gene co-expression network analysis, and joint analysis of transcriptome and metabolome data, we identified 21 key genes related to wax synthesis and metabolism. This research provides a comprehensive landscape of the transcriptome and metabolome, shedding light on the molecular mechanisms of cuticular wax synthesis in A. cepa. Furthermore, it lays the foundation for the development of potential breeding strategies in the future. [Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.scienta.2024.113251</doi></addata></record>
fulltext fulltext
identifier ISSN: 0304-4238
ispartof Scientia horticulturae, 2024-07, Vol.333, p.113251, Article 113251
issn 0304-4238
1879-1018
language eng
recordid cdi_proquest_miscellaneous_3153572813
source Elsevier ScienceDirect Journals
subjects Allium cepa
Allium cepa L
biosynthesis
epicuticular wax
genes
Metabolome
mutants
transcriptome
Transcriptomics
Wax biosynthesis
title Transcriptome and metabolome integrated analysis reveals the wax biosynthesis mechanism of Allium cepa L
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A19%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptome%20and%20metabolome%20integrated%20analysis%20reveals%20the%20wax%20biosynthesis%20mechanism%20of%20Allium%20cepa%20L&rft.jtitle=Scientia%20horticulturae&rft.au=Zhu,%20Mingzhao&rft.date=2024-07-01&rft.volume=333&rft.spage=113251&rft.pages=113251-&rft.artnum=113251&rft.issn=0304-4238&rft.eissn=1879-1018&rft_id=info:doi/10.1016/j.scienta.2024.113251&rft_dat=%3Cproquest_cross%3E3153572813%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153572813&rft_id=info:pmid/&rft_els_id=S0304423824004102&rfr_iscdi=true