Constructing a 3D Bi2WO6/ZnIn2S4 direct Z-scheme heterostructure for improved photocatalytic CO2 reduction performance

[Display omitted] •Constructing a 3D morphology Bi2WO6/ZnIn2S4 direct Z-scheme heterojunctions through the electrostatic self-assembly method.•The performance of photocatalytic CO2 reduction is dramatically improved under the synergistic effect of morphology interface engineering modification strate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2024-05, Vol.662, p.695-706
Hauptverfasser: Yang, Wu, Zhou, Fanghe, Sun, Ningchao, Wu, Jiang, Qi, Yongfeng, Zhang, Yonglin, Song, Jingyu, Sun, Yijing, Liu, Qizhen, Wang, Xudong, Mi, Jianing, Li, Miao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 706
container_issue
container_start_page 695
container_title Journal of colloid and interface science
container_volume 662
creator Yang, Wu
Zhou, Fanghe
Sun, Ningchao
Wu, Jiang
Qi, Yongfeng
Zhang, Yonglin
Song, Jingyu
Sun, Yijing
Liu, Qizhen
Wang, Xudong
Mi, Jianing
Li, Miao
description [Display omitted] •Constructing a 3D morphology Bi2WO6/ZnIn2S4 direct Z-scheme heterojunctions through the electrostatic self-assembly method.•The performance of photocatalytic CO2 reduction is dramatically improved under the synergistic effect of morphology interface engineering modification strategies.•Under simulated sunlight irradiation conditions, the CH4 yield of BZ-20 was 8.73 and 16.30 times higher than that of the pure ZnIn2S4 and Bi2WO6 samples, respectively. Developing efficient heterojunction photocatalysts with enhanced charge transfer and reduced recombination rates of photogenerated carriers is crucial for harnessing solar energy in the photocatalytic CO2 reduction into renewable fuels. This study employed electrostatic self-assembly techniques to construct a 3D Bi2WO6/ZnIn2S4 direct Z-scheme heterojunctions. The unique 3D structure provided abundant active sites and facilitated CO2 adsorption. Moreover, the optimized Bi2WO6/ZnIn2S4 composite demonstrated an impressive CH4 yield of 19.54 μmol g−1 under 4 h of simulated sunlight irradiation, which was about 8.73 and 16.30-fold higher than pure ZnIn2S4 and Bi2WO6. The observed enhancements in photocatalytic performance are attributed to forming a direct Z-scheme heterojunction, which effectively promotes charge transport and migration. This research introduces a novel strategy for constructing photocatalysts through the synergistic effect of morphological interface modifications.
doi_str_mv 10.1016/j.jcis.2024.02.119
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153572542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724003631</els_id><sourcerecordid>2928586198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-c3e4c58d16063ad88ee52be29b1a84540b769a345f0eac8d0388fa59458c12a3</originalsourceid><addsrcrecordid>eNqFkUFPGzEQhS1UpKbAH-jJRy67eOz1ri1xoSktSEg5FAmJi-V4Z4mj7DrYTiT-fR1tz_Qyc3nvaeZ9hHwHVgOD9mZbb51PNWe8qRmvAfQZWQDTsuqAiS9kwRiHSne6-0q-pbRlDEBKvSDHZZhSjgeX_fRGLRU_6Q_PX1btzev0OPE_De19RJfpa5XcBkekG8wYw-w5RKRDiNSP-xiO2NP9JuTgbLa7j-wdXa44jdif0sNE9xiLeLSTw0tyPthdwqt_-4I8_7p_Xj5UT6vfj8u7p8oJ6HKZ2DipemhZK2yvFKLka-R6DVY1smHrrtVWNHJgaJ3qmVBqsFI3UjngVlyQ6zm2nPd-wJTN6JPD3c5OGA7JCJBCdlw2_L9SrrmSqgWtipTPUld6SBEHs49-tPHDADMnHGZrTjjMCYdh3BQcxXQ7m7C8e_QYTXIeSxVzv6YP_jP7X0J3k9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928586198</pqid></control><display><type>article</type><title>Constructing a 3D Bi2WO6/ZnIn2S4 direct Z-scheme heterostructure for improved photocatalytic CO2 reduction performance</title><source>Elsevier ScienceDirect Journals</source><creator>Yang, Wu ; Zhou, Fanghe ; Sun, Ningchao ; Wu, Jiang ; Qi, Yongfeng ; Zhang, Yonglin ; Song, Jingyu ; Sun, Yijing ; Liu, Qizhen ; Wang, Xudong ; Mi, Jianing ; Li, Miao</creator><creatorcontrib>Yang, Wu ; Zhou, Fanghe ; Sun, Ningchao ; Wu, Jiang ; Qi, Yongfeng ; Zhang, Yonglin ; Song, Jingyu ; Sun, Yijing ; Liu, Qizhen ; Wang, Xudong ; Mi, Jianing ; Li, Miao</creatorcontrib><description>[Display omitted] •Constructing a 3D morphology Bi2WO6/ZnIn2S4 direct Z-scheme heterojunctions through the electrostatic self-assembly method.•The performance of photocatalytic CO2 reduction is dramatically improved under the synergistic effect of morphology interface engineering modification strategies.•Under simulated sunlight irradiation conditions, the CH4 yield of BZ-20 was 8.73 and 16.30 times higher than that of the pure ZnIn2S4 and Bi2WO6 samples, respectively. Developing efficient heterojunction photocatalysts with enhanced charge transfer and reduced recombination rates of photogenerated carriers is crucial for harnessing solar energy in the photocatalytic CO2 reduction into renewable fuels. This study employed electrostatic self-assembly techniques to construct a 3D Bi2WO6/ZnIn2S4 direct Z-scheme heterojunctions. The unique 3D structure provided abundant active sites and facilitated CO2 adsorption. Moreover, the optimized Bi2WO6/ZnIn2S4 composite demonstrated an impressive CH4 yield of 19.54 μmol g−1 under 4 h of simulated sunlight irradiation, which was about 8.73 and 16.30-fold higher than pure ZnIn2S4 and Bi2WO6. The observed enhancements in photocatalytic performance are attributed to forming a direct Z-scheme heterojunction, which effectively promotes charge transport and migration. This research introduces a novel strategy for constructing photocatalysts through the synergistic effect of morphological interface modifications.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.02.119</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>adsorption ; Bi2WO6/ZnIn2S4 ; carbon dioxide ; Electrostatic self-assembly ; Interface engineering ; irradiation ; lighting ; Morphology control ; Photocatalysis ; photocatalysts ; solar energy ; synergism</subject><ispartof>Journal of colloid and interface science, 2024-05, Vol.662, p.695-706</ispartof><rights>2024 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-c3e4c58d16063ad88ee52be29b1a84540b769a345f0eac8d0388fa59458c12a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979724003631$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yang, Wu</creatorcontrib><creatorcontrib>Zhou, Fanghe</creatorcontrib><creatorcontrib>Sun, Ningchao</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><creatorcontrib>Qi, Yongfeng</creatorcontrib><creatorcontrib>Zhang, Yonglin</creatorcontrib><creatorcontrib>Song, Jingyu</creatorcontrib><creatorcontrib>Sun, Yijing</creatorcontrib><creatorcontrib>Liu, Qizhen</creatorcontrib><creatorcontrib>Wang, Xudong</creatorcontrib><creatorcontrib>Mi, Jianing</creatorcontrib><creatorcontrib>Li, Miao</creatorcontrib><title>Constructing a 3D Bi2WO6/ZnIn2S4 direct Z-scheme heterostructure for improved photocatalytic CO2 reduction performance</title><title>Journal of colloid and interface science</title><description>[Display omitted] •Constructing a 3D morphology Bi2WO6/ZnIn2S4 direct Z-scheme heterojunctions through the electrostatic self-assembly method.•The performance of photocatalytic CO2 reduction is dramatically improved under the synergistic effect of morphology interface engineering modification strategies.•Under simulated sunlight irradiation conditions, the CH4 yield of BZ-20 was 8.73 and 16.30 times higher than that of the pure ZnIn2S4 and Bi2WO6 samples, respectively. Developing efficient heterojunction photocatalysts with enhanced charge transfer and reduced recombination rates of photogenerated carriers is crucial for harnessing solar energy in the photocatalytic CO2 reduction into renewable fuels. This study employed electrostatic self-assembly techniques to construct a 3D Bi2WO6/ZnIn2S4 direct Z-scheme heterojunctions. The unique 3D structure provided abundant active sites and facilitated CO2 adsorption. Moreover, the optimized Bi2WO6/ZnIn2S4 composite demonstrated an impressive CH4 yield of 19.54 μmol g−1 under 4 h of simulated sunlight irradiation, which was about 8.73 and 16.30-fold higher than pure ZnIn2S4 and Bi2WO6. The observed enhancements in photocatalytic performance are attributed to forming a direct Z-scheme heterojunction, which effectively promotes charge transport and migration. This research introduces a novel strategy for constructing photocatalysts through the synergistic effect of morphological interface modifications.</description><subject>adsorption</subject><subject>Bi2WO6/ZnIn2S4</subject><subject>carbon dioxide</subject><subject>Electrostatic self-assembly</subject><subject>Interface engineering</subject><subject>irradiation</subject><subject>lighting</subject><subject>Morphology control</subject><subject>Photocatalysis</subject><subject>photocatalysts</subject><subject>solar energy</subject><subject>synergism</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkUFPGzEQhS1UpKbAH-jJRy67eOz1ri1xoSktSEg5FAmJi-V4Z4mj7DrYTiT-fR1tz_Qyc3nvaeZ9hHwHVgOD9mZbb51PNWe8qRmvAfQZWQDTsuqAiS9kwRiHSne6-0q-pbRlDEBKvSDHZZhSjgeX_fRGLRU_6Q_PX1btzev0OPE_De19RJfpa5XcBkekG8wYw-w5RKRDiNSP-xiO2NP9JuTgbLa7j-wdXa44jdif0sNE9xiLeLSTw0tyPthdwqt_-4I8_7p_Xj5UT6vfj8u7p8oJ6HKZ2DipemhZK2yvFKLka-R6DVY1smHrrtVWNHJgaJ3qmVBqsFI3UjngVlyQ6zm2nPd-wJTN6JPD3c5OGA7JCJBCdlw2_L9SrrmSqgWtipTPUld6SBEHs49-tPHDADMnHGZrTjjMCYdh3BQcxXQ7m7C8e_QYTXIeSxVzv6YP_jP7X0J3k9w</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Yang, Wu</creator><creator>Zhou, Fanghe</creator><creator>Sun, Ningchao</creator><creator>Wu, Jiang</creator><creator>Qi, Yongfeng</creator><creator>Zhang, Yonglin</creator><creator>Song, Jingyu</creator><creator>Sun, Yijing</creator><creator>Liu, Qizhen</creator><creator>Wang, Xudong</creator><creator>Mi, Jianing</creator><creator>Li, Miao</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240515</creationdate><title>Constructing a 3D Bi2WO6/ZnIn2S4 direct Z-scheme heterostructure for improved photocatalytic CO2 reduction performance</title><author>Yang, Wu ; Zhou, Fanghe ; Sun, Ningchao ; Wu, Jiang ; Qi, Yongfeng ; Zhang, Yonglin ; Song, Jingyu ; Sun, Yijing ; Liu, Qizhen ; Wang, Xudong ; Mi, Jianing ; Li, Miao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-c3e4c58d16063ad88ee52be29b1a84540b769a345f0eac8d0388fa59458c12a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adsorption</topic><topic>Bi2WO6/ZnIn2S4</topic><topic>carbon dioxide</topic><topic>Electrostatic self-assembly</topic><topic>Interface engineering</topic><topic>irradiation</topic><topic>lighting</topic><topic>Morphology control</topic><topic>Photocatalysis</topic><topic>photocatalysts</topic><topic>solar energy</topic><topic>synergism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Wu</creatorcontrib><creatorcontrib>Zhou, Fanghe</creatorcontrib><creatorcontrib>Sun, Ningchao</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><creatorcontrib>Qi, Yongfeng</creatorcontrib><creatorcontrib>Zhang, Yonglin</creatorcontrib><creatorcontrib>Song, Jingyu</creatorcontrib><creatorcontrib>Sun, Yijing</creatorcontrib><creatorcontrib>Liu, Qizhen</creatorcontrib><creatorcontrib>Wang, Xudong</creatorcontrib><creatorcontrib>Mi, Jianing</creatorcontrib><creatorcontrib>Li, Miao</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Wu</au><au>Zhou, Fanghe</au><au>Sun, Ningchao</au><au>Wu, Jiang</au><au>Qi, Yongfeng</au><au>Zhang, Yonglin</au><au>Song, Jingyu</au><au>Sun, Yijing</au><au>Liu, Qizhen</au><au>Wang, Xudong</au><au>Mi, Jianing</au><au>Li, Miao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing a 3D Bi2WO6/ZnIn2S4 direct Z-scheme heterostructure for improved photocatalytic CO2 reduction performance</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2024-05-15</date><risdate>2024</risdate><volume>662</volume><spage>695</spage><epage>706</epage><pages>695-706</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] •Constructing a 3D morphology Bi2WO6/ZnIn2S4 direct Z-scheme heterojunctions through the electrostatic self-assembly method.•The performance of photocatalytic CO2 reduction is dramatically improved under the synergistic effect of morphology interface engineering modification strategies.•Under simulated sunlight irradiation conditions, the CH4 yield of BZ-20 was 8.73 and 16.30 times higher than that of the pure ZnIn2S4 and Bi2WO6 samples, respectively. Developing efficient heterojunction photocatalysts with enhanced charge transfer and reduced recombination rates of photogenerated carriers is crucial for harnessing solar energy in the photocatalytic CO2 reduction into renewable fuels. This study employed electrostatic self-assembly techniques to construct a 3D Bi2WO6/ZnIn2S4 direct Z-scheme heterojunctions. The unique 3D structure provided abundant active sites and facilitated CO2 adsorption. Moreover, the optimized Bi2WO6/ZnIn2S4 composite demonstrated an impressive CH4 yield of 19.54 μmol g−1 under 4 h of simulated sunlight irradiation, which was about 8.73 and 16.30-fold higher than pure ZnIn2S4 and Bi2WO6. The observed enhancements in photocatalytic performance are attributed to forming a direct Z-scheme heterojunction, which effectively promotes charge transport and migration. This research introduces a novel strategy for constructing photocatalysts through the synergistic effect of morphological interface modifications.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2024.02.119</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2024-05, Vol.662, p.695-706
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_3153572542
source Elsevier ScienceDirect Journals
subjects adsorption
Bi2WO6/ZnIn2S4
carbon dioxide
Electrostatic self-assembly
Interface engineering
irradiation
lighting
Morphology control
Photocatalysis
photocatalysts
solar energy
synergism
title Constructing a 3D Bi2WO6/ZnIn2S4 direct Z-scheme heterostructure for improved photocatalytic CO2 reduction performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20a%203D%20Bi2WO6/ZnIn2S4%20direct%20Z-scheme%20heterostructure%20for%20improved%20photocatalytic%20CO2%20reduction%20performance&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Yang,%20Wu&rft.date=2024-05-15&rft.volume=662&rft.spage=695&rft.epage=706&rft.pages=695-706&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.02.119&rft_dat=%3Cproquest_cross%3E2928586198%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928586198&rft_id=info:pmid/&rft_els_id=S0021979724003631&rfr_iscdi=true