Stable and easily detachable cellulose-based membrane system inspired by water hyacinth for efficient heavy metals removal from water
A rapid extracted and concentrated system engineered by green polymers is attractive but there is still a challenge with respect to both materials and processes. Water hyacinth root cells have evolved as a biological membrane system that can transport and concentrate metal ions from water to the pla...
Gespeichert in:
Veröffentlicht in: | Cellulose (London) 2023-12, Vol.30 (18), p.11619-11632 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11632 |
---|---|
container_issue | 18 |
container_start_page | 11619 |
container_title | Cellulose (London) |
container_volume | 30 |
creator | Zhang, Fang Sun, Yuxin Qian, Xinye Tan, Xiaoyan Liu, Peipei Yao, Zhong Zheng, Chunling Hu, Yonghong |
description | A rapid extracted and concentrated system engineered by green polymers is attractive but there is still a challenge with respect to both materials and processes. Water hyacinth root cells have evolved as a biological membrane system that can transport and concentrate metal ions from water to the plant body rather than simply utilizing the intrinsic trapping properties of cellulose/lignin. This has inspired a novel biological membrane system (BMS), namely, a porous nanocellulose/lignin microdevice (NLMD) accommodated with a stripping agent that is dispersed in an organic phase. In practice, in water, metal ions can be efficiently transported through an organic membrane phase and finally locked in the NLMD, as demonstrated by extraction efficiency (3 min, ~ 90%), as well as high-enrichment (~ 27 times) toward Pb, Zn, and Cu ions. The NLMD was fabricated using nanocellulose and reinforced using lignin–polyamide epoxy chloropropane nanoaggregates that endow the high mechanical stability and good W/O interfacial affinity of the NLMD. Significantly, the BMS could be facilely detached via simple filtration and shape recovery, offering a high-performance and facile regeneration pathway that are hardly attainable by the conventional cellulose-based adsorbents. |
doi_str_mv | 10.1007/s10570-023-05579-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153570397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153570397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-32c2f298c0d30681839cab2f00557a41ce7361d5aa27f673693ee1ce9598ec673</originalsourceid><addsrcrecordid>eNp9UclKBDEQDaLguPyAp4AXL62VxF5ylMENBjyo4C2k0xWnh17GJDNDf4D_bdoWBA-eEt5S1KtHyBmDSwaQX3kGaQ4JcJFAmuYy2e2RGUtznhQFf9snM5CZHGl5SI68XwGAzDmbkc_noMsGqe4qitrXzUArDNosv1GDTbNpeo9JqT1WtMW2dLpD6gcfsKV159e1i0Q50J0O6Ohy0KbuwpLa3lG0tjY1doEuUW-HaA-68dRh2291Q63r28l2Qg5sZPD05z0mr3e3L_OHZPF0_zi_WSRGgAiJ4IZbLgsDlYCsYIWQRpfcwphZXzODuchYlWrNc5vFvxSIEZWpLNBE4JhcTHPXrv_YoA-qrf0YMmbqN14Jlop4RyFH6fkf6arfuC5up3ghM5BSsFHFJ5VxvfcOrVq7utVuUAzU2IyamlHx9Oq7GbWLJjGZfBR37-h-R__j-gJnKpOO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2896099317</pqid></control><display><type>article</type><title>Stable and easily detachable cellulose-based membrane system inspired by water hyacinth for efficient heavy metals removal from water</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Fang ; Sun, Yuxin ; Qian, Xinye ; Tan, Xiaoyan ; Liu, Peipei ; Yao, Zhong ; Zheng, Chunling ; Hu, Yonghong</creator><creatorcontrib>Zhang, Fang ; Sun, Yuxin ; Qian, Xinye ; Tan, Xiaoyan ; Liu, Peipei ; Yao, Zhong ; Zheng, Chunling ; Hu, Yonghong</creatorcontrib><description>A rapid extracted and concentrated system engineered by green polymers is attractive but there is still a challenge with respect to both materials and processes. Water hyacinth root cells have evolved as a biological membrane system that can transport and concentrate metal ions from water to the plant body rather than simply utilizing the intrinsic trapping properties of cellulose/lignin. This has inspired a novel biological membrane system (BMS), namely, a porous nanocellulose/lignin microdevice (NLMD) accommodated with a stripping agent that is dispersed in an organic phase. In practice, in water, metal ions can be efficiently transported through an organic membrane phase and finally locked in the NLMD, as demonstrated by extraction efficiency (3 min, ~ 90%), as well as high-enrichment (~ 27 times) toward Pb, Zn, and Cu ions. The NLMD was fabricated using nanocellulose and reinforced using lignin–polyamide epoxy chloropropane nanoaggregates that endow the high mechanical stability and good W/O interfacial affinity of the NLMD. Significantly, the BMS could be facilely detached via simple filtration and shape recovery, offering a high-performance and facile regeneration pathway that are hardly attainable by the conventional cellulose-based adsorbents.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-023-05579-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>adsorbents ; Bioorganic Chemistry ; Cellulose ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; Eichhornia crassipes ; epoxides ; filtration ; Glass ; Heavy metals ; Interface stability ; Lignin ; Membranes ; Natural Materials ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polyamide resins ; Polymer Sciences ; Sustainable Development ; Water hyacinths</subject><ispartof>Cellulose (London), 2023-12, Vol.30 (18), p.11619-11632</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-32c2f298c0d30681839cab2f00557a41ce7361d5aa27f673693ee1ce9598ec673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-023-05579-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-023-05579-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Fang</creatorcontrib><creatorcontrib>Sun, Yuxin</creatorcontrib><creatorcontrib>Qian, Xinye</creatorcontrib><creatorcontrib>Tan, Xiaoyan</creatorcontrib><creatorcontrib>Liu, Peipei</creatorcontrib><creatorcontrib>Yao, Zhong</creatorcontrib><creatorcontrib>Zheng, Chunling</creatorcontrib><creatorcontrib>Hu, Yonghong</creatorcontrib><title>Stable and easily detachable cellulose-based membrane system inspired by water hyacinth for efficient heavy metals removal from water</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>A rapid extracted and concentrated system engineered by green polymers is attractive but there is still a challenge with respect to both materials and processes. Water hyacinth root cells have evolved as a biological membrane system that can transport and concentrate metal ions from water to the plant body rather than simply utilizing the intrinsic trapping properties of cellulose/lignin. This has inspired a novel biological membrane system (BMS), namely, a porous nanocellulose/lignin microdevice (NLMD) accommodated with a stripping agent that is dispersed in an organic phase. In practice, in water, metal ions can be efficiently transported through an organic membrane phase and finally locked in the NLMD, as demonstrated by extraction efficiency (3 min, ~ 90%), as well as high-enrichment (~ 27 times) toward Pb, Zn, and Cu ions. The NLMD was fabricated using nanocellulose and reinforced using lignin–polyamide epoxy chloropropane nanoaggregates that endow the high mechanical stability and good W/O interfacial affinity of the NLMD. Significantly, the BMS could be facilely detached via simple filtration and shape recovery, offering a high-performance and facile regeneration pathway that are hardly attainable by the conventional cellulose-based adsorbents.</description><subject>adsorbents</subject><subject>Bioorganic Chemistry</subject><subject>Cellulose</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Eichhornia crassipes</subject><subject>epoxides</subject><subject>filtration</subject><subject>Glass</subject><subject>Heavy metals</subject><subject>Interface stability</subject><subject>Lignin</subject><subject>Membranes</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polyamide resins</subject><subject>Polymer Sciences</subject><subject>Sustainable Development</subject><subject>Water hyacinths</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UclKBDEQDaLguPyAp4AXL62VxF5ylMENBjyo4C2k0xWnh17GJDNDf4D_bdoWBA-eEt5S1KtHyBmDSwaQX3kGaQ4JcJFAmuYy2e2RGUtznhQFf9snM5CZHGl5SI68XwGAzDmbkc_noMsGqe4qitrXzUArDNosv1GDTbNpeo9JqT1WtMW2dLpD6gcfsKV159e1i0Q50J0O6Ohy0KbuwpLa3lG0tjY1doEuUW-HaA-68dRh2291Q63r28l2Qg5sZPD05z0mr3e3L_OHZPF0_zi_WSRGgAiJ4IZbLgsDlYCsYIWQRpfcwphZXzODuchYlWrNc5vFvxSIEZWpLNBE4JhcTHPXrv_YoA-qrf0YMmbqN14Jlop4RyFH6fkf6arfuC5up3ghM5BSsFHFJ5VxvfcOrVq7utVuUAzU2IyamlHx9Oq7GbWLJjGZfBR37-h-R__j-gJnKpOO</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Zhang, Fang</creator><creator>Sun, Yuxin</creator><creator>Qian, Xinye</creator><creator>Tan, Xiaoyan</creator><creator>Liu, Peipei</creator><creator>Yao, Zhong</creator><creator>Zheng, Chunling</creator><creator>Hu, Yonghong</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20231201</creationdate><title>Stable and easily detachable cellulose-based membrane system inspired by water hyacinth for efficient heavy metals removal from water</title><author>Zhang, Fang ; Sun, Yuxin ; Qian, Xinye ; Tan, Xiaoyan ; Liu, Peipei ; Yao, Zhong ; Zheng, Chunling ; Hu, Yonghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-32c2f298c0d30681839cab2f00557a41ce7361d5aa27f673693ee1ce9598ec673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adsorbents</topic><topic>Bioorganic Chemistry</topic><topic>Cellulose</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Eichhornia crassipes</topic><topic>epoxides</topic><topic>filtration</topic><topic>Glass</topic><topic>Heavy metals</topic><topic>Interface stability</topic><topic>Lignin</topic><topic>Membranes</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polyamide resins</topic><topic>Polymer Sciences</topic><topic>Sustainable Development</topic><topic>Water hyacinths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Fang</creatorcontrib><creatorcontrib>Sun, Yuxin</creatorcontrib><creatorcontrib>Qian, Xinye</creatorcontrib><creatorcontrib>Tan, Xiaoyan</creatorcontrib><creatorcontrib>Liu, Peipei</creatorcontrib><creatorcontrib>Yao, Zhong</creatorcontrib><creatorcontrib>Zheng, Chunling</creatorcontrib><creatorcontrib>Hu, Yonghong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Fang</au><au>Sun, Yuxin</au><au>Qian, Xinye</au><au>Tan, Xiaoyan</au><au>Liu, Peipei</au><au>Yao, Zhong</au><au>Zheng, Chunling</au><au>Hu, Yonghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable and easily detachable cellulose-based membrane system inspired by water hyacinth for efficient heavy metals removal from water</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>30</volume><issue>18</issue><spage>11619</spage><epage>11632</epage><pages>11619-11632</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>A rapid extracted and concentrated system engineered by green polymers is attractive but there is still a challenge with respect to both materials and processes. Water hyacinth root cells have evolved as a biological membrane system that can transport and concentrate metal ions from water to the plant body rather than simply utilizing the intrinsic trapping properties of cellulose/lignin. This has inspired a novel biological membrane system (BMS), namely, a porous nanocellulose/lignin microdevice (NLMD) accommodated with a stripping agent that is dispersed in an organic phase. In practice, in water, metal ions can be efficiently transported through an organic membrane phase and finally locked in the NLMD, as demonstrated by extraction efficiency (3 min, ~ 90%), as well as high-enrichment (~ 27 times) toward Pb, Zn, and Cu ions. The NLMD was fabricated using nanocellulose and reinforced using lignin–polyamide epoxy chloropropane nanoaggregates that endow the high mechanical stability and good W/O interfacial affinity of the NLMD. Significantly, the BMS could be facilely detached via simple filtration and shape recovery, offering a high-performance and facile regeneration pathway that are hardly attainable by the conventional cellulose-based adsorbents.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-023-05579-w</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-0239 |
ispartof | Cellulose (London), 2023-12, Vol.30 (18), p.11619-11632 |
issn | 0969-0239 1572-882X |
language | eng |
recordid | cdi_proquest_miscellaneous_3153570397 |
source | Springer Nature - Complete Springer Journals |
subjects | adsorbents Bioorganic Chemistry Cellulose Ceramics Chemistry Chemistry and Materials Science Composites Eichhornia crassipes epoxides filtration Glass Heavy metals Interface stability Lignin Membranes Natural Materials Organic Chemistry Original Research Physical Chemistry Polyamide resins Polymer Sciences Sustainable Development Water hyacinths |
title | Stable and easily detachable cellulose-based membrane system inspired by water hyacinth for efficient heavy metals removal from water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20and%20easily%20detachable%20cellulose-based%20membrane%20system%20inspired%20by%20water%20hyacinth%20for%20efficient%20heavy%20metals%20removal%20from%20water&rft.jtitle=Cellulose%20(London)&rft.au=Zhang,%20Fang&rft.date=2023-12-01&rft.volume=30&rft.issue=18&rft.spage=11619&rft.epage=11632&rft.pages=11619-11632&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-023-05579-w&rft_dat=%3Cproquest_cross%3E3153570397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2896099317&rft_id=info:pmid/&rfr_iscdi=true |