Electrochemiluminescence in Graphitic Carbon Nitride Decorated with Silver Nanoparticles for Dopamine Determination Using Machine Learning

Electrochemiluminescence (ECL) luminophores with wavelength-tunable multicolor emissions are essential for multicolor ECL imaging detection and multiplexed analysis. In this work, silver nanoparticle (Ag NP)-decorated graphitic carbon nitride (g-CN@Ag) nanocomposites were synthesized. The morphology...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-05, Vol.16 (21), p.27767-27777
Hauptverfasser: Li, Fang, Peng, Hao, Shen, Nuotong, Yang, Chen, Zhang, Limin, Li, Bing, He, Jianbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27777
container_issue 21
container_start_page 27767
container_title ACS applied materials & interfaces
container_volume 16
creator Li, Fang
Peng, Hao
Shen, Nuotong
Yang, Chen
Zhang, Limin
Li, Bing
He, Jianbo
description Electrochemiluminescence (ECL) luminophores with wavelength-tunable multicolor emissions are essential for multicolor ECL imaging detection and multiplexed analysis. In this work, silver nanoparticle (Ag NP)-decorated graphitic carbon nitride (g-CN@Ag) nanocomposites were synthesized. The morphology, chemical composition, structure, and ECL property of g-CN@Ag were investigated. The prepared g-CN, g-CN@Ag1, g-CN@Ag5, and g-CN@Ag10 can produce blue, blue-green, chartreuse, and yellow colored ECL emissions, respectively, by using K2S2O8 as the coreagent. The ECL emission wavelength of g-CN@Ag can be regulated from 460 to 565 nm by modulating the content of the immobilized Ag NPs. Then, a multicolor ECL detection array was fabricated by using g-CN, g-CN@Ag1, g-CN@Ag5, and g-CN@Ag10 as four ECL luminophores. Dopamine was detected based on its inhibition effect on the multicolor ECL emissions. The linear range is from 0.1 nM to 1 mM with the lowest detection limit of 44 pM. Then, machine learning-assisted multiparameter concentration prediction of dopamine was further carried out by combining the deep neural network (DNN) algorithm. This work provides a new avenue to regulate the ECL emission wavelength of g-CN by using the metal nanoparticle modification strategy and presents an effective machine learning-assisted multicolor ECL detection strategy for accurate multiparameter quantitative detection.
doi_str_mv 10.1021/acsami.4c03996
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153564640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055893107</sourcerecordid><originalsourceid>FETCH-LOGICAL-a318t-ff21813842dea577e40e2be342710c900fc16e52c6700b5784bf95e7ddd02ac3</originalsourceid><addsrcrecordid>eNqFkUtPGzEURq2qqAHabZfIywop4fo1j2UVHq0UYEG6Hnk8d4jRjJ3aHlD_Qn81jpKyq1j52j7fkeyPkK8MFgw4u9Am6tEupAFR18UHcsxqKecVV_zj2yzljJzE-ARQCA7qE5mJqlS8qOCY_L0a0KTgzQZHO0yjdRgNOoPUOnoT9HZjkzV0qUPrHb2zKdgO6SUaH3TCjr7YtKEPdnjGQO-081sdMj9gpL0P9DLvd8ocSBjypJPNml_Rukd6q81md7dCHVw--EyOej1E_HJYT8n6-mq9_DFf3d_8XH5fzbVgVZr3PWcVE5XkHWpVligBeYtC8pKBqQF6wwpU3BQlQKvKSrZ9rbDsug64NuKUfNtrt8H_njCmZrT5ycOgHfopNoIpoQpZSHgfBaWqWjAoM7rYoyb4GAP2zTbYUYc_DYNm11Szb6o5NJUDZwf31I7YveH_qsnA-R7IwebJT8HlT_mf7RWgJqA6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055893107</pqid></control><display><type>article</type><title>Electrochemiluminescence in Graphitic Carbon Nitride Decorated with Silver Nanoparticles for Dopamine Determination Using Machine Learning</title><source>ACS Publications</source><creator>Li, Fang ; Peng, Hao ; Shen, Nuotong ; Yang, Chen ; Zhang, Limin ; Li, Bing ; He, Jianbo</creator><creatorcontrib>Li, Fang ; Peng, Hao ; Shen, Nuotong ; Yang, Chen ; Zhang, Limin ; Li, Bing ; He, Jianbo</creatorcontrib><description>Electrochemiluminescence (ECL) luminophores with wavelength-tunable multicolor emissions are essential for multicolor ECL imaging detection and multiplexed analysis. In this work, silver nanoparticle (Ag NP)-decorated graphitic carbon nitride (g-CN@Ag) nanocomposites were synthesized. The morphology, chemical composition, structure, and ECL property of g-CN@Ag were investigated. The prepared g-CN, g-CN@Ag1, g-CN@Ag5, and g-CN@Ag10 can produce blue, blue-green, chartreuse, and yellow colored ECL emissions, respectively, by using K2S2O8 as the coreagent. The ECL emission wavelength of g-CN@Ag can be regulated from 460 to 565 nm by modulating the content of the immobilized Ag NPs. Then, a multicolor ECL detection array was fabricated by using g-CN, g-CN@Ag1, g-CN@Ag5, and g-CN@Ag10 as four ECL luminophores. Dopamine was detected based on its inhibition effect on the multicolor ECL emissions. The linear range is from 0.1 nM to 1 mM with the lowest detection limit of 44 pM. Then, machine learning-assisted multiparameter concentration prediction of dopamine was further carried out by combining the deep neural network (DNN) algorithm. This work provides a new avenue to regulate the ECL emission wavelength of g-CN by using the metal nanoparticle modification strategy and presents an effective machine learning-assisted multicolor ECL detection strategy for accurate multiparameter quantitative detection.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c03996</identifier><identifier>PMID: 38752680</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>algorithms ; Applications of Polymer, Composite, and Coating Materials ; carbon nitride ; chemical composition ; color ; detection limit ; dopamine ; electrochemiluminescence ; graphene ; nanocomposites ; nanoparticles ; nanosilver ; prediction ; wavelengths</subject><ispartof>ACS applied materials &amp; interfaces, 2024-05, Vol.16 (21), p.27767-27777</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a318t-ff21813842dea577e40e2be342710c900fc16e52c6700b5784bf95e7ddd02ac3</cites><orcidid>0000-0003-3342-4865 ; 0000-0003-3751-9319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c03996$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c03996$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38752680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Peng, Hao</creatorcontrib><creatorcontrib>Shen, Nuotong</creatorcontrib><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Zhang, Limin</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>He, Jianbo</creatorcontrib><title>Electrochemiluminescence in Graphitic Carbon Nitride Decorated with Silver Nanoparticles for Dopamine Determination Using Machine Learning</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Electrochemiluminescence (ECL) luminophores with wavelength-tunable multicolor emissions are essential for multicolor ECL imaging detection and multiplexed analysis. In this work, silver nanoparticle (Ag NP)-decorated graphitic carbon nitride (g-CN@Ag) nanocomposites were synthesized. The morphology, chemical composition, structure, and ECL property of g-CN@Ag were investigated. The prepared g-CN, g-CN@Ag1, g-CN@Ag5, and g-CN@Ag10 can produce blue, blue-green, chartreuse, and yellow colored ECL emissions, respectively, by using K2S2O8 as the coreagent. The ECL emission wavelength of g-CN@Ag can be regulated from 460 to 565 nm by modulating the content of the immobilized Ag NPs. Then, a multicolor ECL detection array was fabricated by using g-CN, g-CN@Ag1, g-CN@Ag5, and g-CN@Ag10 as four ECL luminophores. Dopamine was detected based on its inhibition effect on the multicolor ECL emissions. The linear range is from 0.1 nM to 1 mM with the lowest detection limit of 44 pM. Then, machine learning-assisted multiparameter concentration prediction of dopamine was further carried out by combining the deep neural network (DNN) algorithm. This work provides a new avenue to regulate the ECL emission wavelength of g-CN by using the metal nanoparticle modification strategy and presents an effective machine learning-assisted multicolor ECL detection strategy for accurate multiparameter quantitative detection.</description><subject>algorithms</subject><subject>Applications of Polymer, Composite, and Coating Materials</subject><subject>carbon nitride</subject><subject>chemical composition</subject><subject>color</subject><subject>detection limit</subject><subject>dopamine</subject><subject>electrochemiluminescence</subject><subject>graphene</subject><subject>nanocomposites</subject><subject>nanoparticles</subject><subject>nanosilver</subject><subject>prediction</subject><subject>wavelengths</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkUtPGzEURq2qqAHabZfIywop4fo1j2UVHq0UYEG6Hnk8d4jRjJ3aHlD_Qn81jpKyq1j52j7fkeyPkK8MFgw4u9Am6tEupAFR18UHcsxqKecVV_zj2yzljJzE-ARQCA7qE5mJqlS8qOCY_L0a0KTgzQZHO0yjdRgNOoPUOnoT9HZjkzV0qUPrHb2zKdgO6SUaH3TCjr7YtKEPdnjGQO-081sdMj9gpL0P9DLvd8ocSBjypJPNml_Rukd6q81md7dCHVw--EyOej1E_HJYT8n6-mq9_DFf3d_8XH5fzbVgVZr3PWcVE5XkHWpVligBeYtC8pKBqQF6wwpU3BQlQKvKSrZ9rbDsug64NuKUfNtrt8H_njCmZrT5ycOgHfopNoIpoQpZSHgfBaWqWjAoM7rYoyb4GAP2zTbYUYc_DYNm11Szb6o5NJUDZwf31I7YveH_qsnA-R7IwebJT8HlT_mf7RWgJqA6</recordid><startdate>20240529</startdate><enddate>20240529</enddate><creator>Li, Fang</creator><creator>Peng, Hao</creator><creator>Shen, Nuotong</creator><creator>Yang, Chen</creator><creator>Zhang, Limin</creator><creator>Li, Bing</creator><creator>He, Jianbo</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3342-4865</orcidid><orcidid>https://orcid.org/0000-0003-3751-9319</orcidid></search><sort><creationdate>20240529</creationdate><title>Electrochemiluminescence in Graphitic Carbon Nitride Decorated with Silver Nanoparticles for Dopamine Determination Using Machine Learning</title><author>Li, Fang ; Peng, Hao ; Shen, Nuotong ; Yang, Chen ; Zhang, Limin ; Li, Bing ; He, Jianbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a318t-ff21813842dea577e40e2be342710c900fc16e52c6700b5784bf95e7ddd02ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>algorithms</topic><topic>Applications of Polymer, Composite, and Coating Materials</topic><topic>carbon nitride</topic><topic>chemical composition</topic><topic>color</topic><topic>detection limit</topic><topic>dopamine</topic><topic>electrochemiluminescence</topic><topic>graphene</topic><topic>nanocomposites</topic><topic>nanoparticles</topic><topic>nanosilver</topic><topic>prediction</topic><topic>wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Peng, Hao</creatorcontrib><creatorcontrib>Shen, Nuotong</creatorcontrib><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Zhang, Limin</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>He, Jianbo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fang</au><au>Peng, Hao</au><au>Shen, Nuotong</au><au>Yang, Chen</au><au>Zhang, Limin</au><au>Li, Bing</au><au>He, Jianbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemiluminescence in Graphitic Carbon Nitride Decorated with Silver Nanoparticles for Dopamine Determination Using Machine Learning</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-05-29</date><risdate>2024</risdate><volume>16</volume><issue>21</issue><spage>27767</spage><epage>27777</epage><pages>27767-27777</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Electrochemiluminescence (ECL) luminophores with wavelength-tunable multicolor emissions are essential for multicolor ECL imaging detection and multiplexed analysis. In this work, silver nanoparticle (Ag NP)-decorated graphitic carbon nitride (g-CN@Ag) nanocomposites were synthesized. The morphology, chemical composition, structure, and ECL property of g-CN@Ag were investigated. The prepared g-CN, g-CN@Ag1, g-CN@Ag5, and g-CN@Ag10 can produce blue, blue-green, chartreuse, and yellow colored ECL emissions, respectively, by using K2S2O8 as the coreagent. The ECL emission wavelength of g-CN@Ag can be regulated from 460 to 565 nm by modulating the content of the immobilized Ag NPs. Then, a multicolor ECL detection array was fabricated by using g-CN, g-CN@Ag1, g-CN@Ag5, and g-CN@Ag10 as four ECL luminophores. Dopamine was detected based on its inhibition effect on the multicolor ECL emissions. The linear range is from 0.1 nM to 1 mM with the lowest detection limit of 44 pM. Then, machine learning-assisted multiparameter concentration prediction of dopamine was further carried out by combining the deep neural network (DNN) algorithm. This work provides a new avenue to regulate the ECL emission wavelength of g-CN by using the metal nanoparticle modification strategy and presents an effective machine learning-assisted multicolor ECL detection strategy for accurate multiparameter quantitative detection.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38752680</pmid><doi>10.1021/acsami.4c03996</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3342-4865</orcidid><orcidid>https://orcid.org/0000-0003-3751-9319</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-05, Vol.16 (21), p.27767-27777
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3153564640
source ACS Publications
subjects algorithms
Applications of Polymer, Composite, and Coating Materials
carbon nitride
chemical composition
color
detection limit
dopamine
electrochemiluminescence
graphene
nanocomposites
nanoparticles
nanosilver
prediction
wavelengths
title Electrochemiluminescence in Graphitic Carbon Nitride Decorated with Silver Nanoparticles for Dopamine Determination Using Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T01%3A59%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemiluminescence%20in%20Graphitic%20Carbon%20Nitride%20Decorated%20with%20Silver%20Nanoparticles%20for%20Dopamine%20Determination%20Using%20Machine%20Learning&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Li,%20Fang&rft.date=2024-05-29&rft.volume=16&rft.issue=21&rft.spage=27767&rft.epage=27777&rft.pages=27767-27777&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c03996&rft_dat=%3Cproquest_cross%3E3055893107%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055893107&rft_id=info:pmid/38752680&rfr_iscdi=true