Electrochemiluminescence in Graphitic Carbon Nitride Decorated with Silver Nanoparticles for Dopamine Determination Using Machine Learning
Electrochemiluminescence (ECL) luminophores with wavelength-tunable multicolor emissions are essential for multicolor ECL imaging detection and multiplexed analysis. In this work, silver nanoparticle (Ag NP)-decorated graphitic carbon nitride (g-CN@Ag) nanocomposites were synthesized. The morphology...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-05, Vol.16 (21), p.27767-27777 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27777 |
---|---|
container_issue | 21 |
container_start_page | 27767 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Li, Fang Peng, Hao Shen, Nuotong Yang, Chen Zhang, Limin Li, Bing He, Jianbo |
description | Electrochemiluminescence (ECL) luminophores with wavelength-tunable multicolor emissions are essential for multicolor ECL imaging detection and multiplexed analysis. In this work, silver nanoparticle (Ag NP)-decorated graphitic carbon nitride (g-CN@Ag) nanocomposites were synthesized. The morphology, chemical composition, structure, and ECL property of g-CN@Ag were investigated. The prepared g-CN, g-CN@Ag1, g-CN@Ag5, and g-CN@Ag10 can produce blue, blue-green, chartreuse, and yellow colored ECL emissions, respectively, by using K2S2O8 as the coreagent. The ECL emission wavelength of g-CN@Ag can be regulated from 460 to 565 nm by modulating the content of the immobilized Ag NPs. Then, a multicolor ECL detection array was fabricated by using g-CN, g-CN@Ag1, g-CN@Ag5, and g-CN@Ag10 as four ECL luminophores. Dopamine was detected based on its inhibition effect on the multicolor ECL emissions. The linear range is from 0.1 nM to 1 mM with the lowest detection limit of 44 pM. Then, machine learning-assisted multiparameter concentration prediction of dopamine was further carried out by combining the deep neural network (DNN) algorithm. This work provides a new avenue to regulate the ECL emission wavelength of g-CN by using the metal nanoparticle modification strategy and presents an effective machine learning-assisted multicolor ECL detection strategy for accurate multiparameter quantitative detection. |
doi_str_mv | 10.1021/acsami.4c03996 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153564640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055893107</sourcerecordid><originalsourceid>FETCH-LOGICAL-a318t-ff21813842dea577e40e2be342710c900fc16e52c6700b5784bf95e7ddd02ac3</originalsourceid><addsrcrecordid>eNqFkUtPGzEURq2qqAHabZfIywop4fo1j2UVHq0UYEG6Hnk8d4jRjJ3aHlD_Qn81jpKyq1j52j7fkeyPkK8MFgw4u9Am6tEupAFR18UHcsxqKecVV_zj2yzljJzE-ARQCA7qE5mJqlS8qOCY_L0a0KTgzQZHO0yjdRgNOoPUOnoT9HZjkzV0qUPrHb2zKdgO6SUaH3TCjr7YtKEPdnjGQO-081sdMj9gpL0P9DLvd8ocSBjypJPNml_Rukd6q81md7dCHVw--EyOej1E_HJYT8n6-mq9_DFf3d_8XH5fzbVgVZr3PWcVE5XkHWpVligBeYtC8pKBqQF6wwpU3BQlQKvKSrZ9rbDsug64NuKUfNtrt8H_njCmZrT5ycOgHfopNoIpoQpZSHgfBaWqWjAoM7rYoyb4GAP2zTbYUYc_DYNm11Szb6o5NJUDZwf31I7YveH_qsnA-R7IwebJT8HlT_mf7RWgJqA6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055893107</pqid></control><display><type>article</type><title>Electrochemiluminescence in Graphitic Carbon Nitride Decorated with Silver Nanoparticles for Dopamine Determination Using Machine Learning</title><source>ACS Publications</source><creator>Li, Fang ; Peng, Hao ; Shen, Nuotong ; Yang, Chen ; Zhang, Limin ; Li, Bing ; He, Jianbo</creator><creatorcontrib>Li, Fang ; Peng, Hao ; Shen, Nuotong ; Yang, Chen ; Zhang, Limin ; Li, Bing ; He, Jianbo</creatorcontrib><description>Electrochemiluminescence (ECL) luminophores with wavelength-tunable multicolor emissions are essential for multicolor ECL imaging detection and multiplexed analysis. In this work, silver nanoparticle (Ag NP)-decorated graphitic carbon nitride (g-CN@Ag) nanocomposites were synthesized. The morphology, chemical composition, structure, and ECL property of g-CN@Ag were investigated. The prepared g-CN, g-CN@Ag1, g-CN@Ag5, and g-CN@Ag10 can produce blue, blue-green, chartreuse, and yellow colored ECL emissions, respectively, by using K2S2O8 as the coreagent. The ECL emission wavelength of g-CN@Ag can be regulated from 460 to 565 nm by modulating the content of the immobilized Ag NPs. Then, a multicolor ECL detection array was fabricated by using g-CN, g-CN@Ag1, g-CN@Ag5, and g-CN@Ag10 as four ECL luminophores. Dopamine was detected based on its inhibition effect on the multicolor ECL emissions. The linear range is from 0.1 nM to 1 mM with the lowest detection limit of 44 pM. Then, machine learning-assisted multiparameter concentration prediction of dopamine was further carried out by combining the deep neural network (DNN) algorithm. This work provides a new avenue to regulate the ECL emission wavelength of g-CN by using the metal nanoparticle modification strategy and presents an effective machine learning-assisted multicolor ECL detection strategy for accurate multiparameter quantitative detection.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c03996</identifier><identifier>PMID: 38752680</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>algorithms ; Applications of Polymer, Composite, and Coating Materials ; carbon nitride ; chemical composition ; color ; detection limit ; dopamine ; electrochemiluminescence ; graphene ; nanocomposites ; nanoparticles ; nanosilver ; prediction ; wavelengths</subject><ispartof>ACS applied materials & interfaces, 2024-05, Vol.16 (21), p.27767-27777</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a318t-ff21813842dea577e40e2be342710c900fc16e52c6700b5784bf95e7ddd02ac3</cites><orcidid>0000-0003-3342-4865 ; 0000-0003-3751-9319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c03996$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c03996$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38752680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Peng, Hao</creatorcontrib><creatorcontrib>Shen, Nuotong</creatorcontrib><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Zhang, Limin</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>He, Jianbo</creatorcontrib><title>Electrochemiluminescence in Graphitic Carbon Nitride Decorated with Silver Nanoparticles for Dopamine Determination Using Machine Learning</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Electrochemiluminescence (ECL) luminophores with wavelength-tunable multicolor emissions are essential for multicolor ECL imaging detection and multiplexed analysis. In this work, silver nanoparticle (Ag NP)-decorated graphitic carbon nitride (g-CN@Ag) nanocomposites were synthesized. The morphology, chemical composition, structure, and ECL property of g-CN@Ag were investigated. The prepared g-CN, g-CN@Ag1, g-CN@Ag5, and g-CN@Ag10 can produce blue, blue-green, chartreuse, and yellow colored ECL emissions, respectively, by using K2S2O8 as the coreagent. The ECL emission wavelength of g-CN@Ag can be regulated from 460 to 565 nm by modulating the content of the immobilized Ag NPs. Then, a multicolor ECL detection array was fabricated by using g-CN, g-CN@Ag1, g-CN@Ag5, and g-CN@Ag10 as four ECL luminophores. Dopamine was detected based on its inhibition effect on the multicolor ECL emissions. The linear range is from 0.1 nM to 1 mM with the lowest detection limit of 44 pM. Then, machine learning-assisted multiparameter concentration prediction of dopamine was further carried out by combining the deep neural network (DNN) algorithm. This work provides a new avenue to regulate the ECL emission wavelength of g-CN by using the metal nanoparticle modification strategy and presents an effective machine learning-assisted multicolor ECL detection strategy for accurate multiparameter quantitative detection.</description><subject>algorithms</subject><subject>Applications of Polymer, Composite, and Coating Materials</subject><subject>carbon nitride</subject><subject>chemical composition</subject><subject>color</subject><subject>detection limit</subject><subject>dopamine</subject><subject>electrochemiluminescence</subject><subject>graphene</subject><subject>nanocomposites</subject><subject>nanoparticles</subject><subject>nanosilver</subject><subject>prediction</subject><subject>wavelengths</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkUtPGzEURq2qqAHabZfIywop4fo1j2UVHq0UYEG6Hnk8d4jRjJ3aHlD_Qn81jpKyq1j52j7fkeyPkK8MFgw4u9Am6tEupAFR18UHcsxqKecVV_zj2yzljJzE-ARQCA7qE5mJqlS8qOCY_L0a0KTgzQZHO0yjdRgNOoPUOnoT9HZjkzV0qUPrHb2zKdgO6SUaH3TCjr7YtKEPdnjGQO-081sdMj9gpL0P9DLvd8ocSBjypJPNml_Rukd6q81md7dCHVw--EyOej1E_HJYT8n6-mq9_DFf3d_8XH5fzbVgVZr3PWcVE5XkHWpVligBeYtC8pKBqQF6wwpU3BQlQKvKSrZ9rbDsug64NuKUfNtrt8H_njCmZrT5ycOgHfopNoIpoQpZSHgfBaWqWjAoM7rYoyb4GAP2zTbYUYc_DYNm11Szb6o5NJUDZwf31I7YveH_qsnA-R7IwebJT8HlT_mf7RWgJqA6</recordid><startdate>20240529</startdate><enddate>20240529</enddate><creator>Li, Fang</creator><creator>Peng, Hao</creator><creator>Shen, Nuotong</creator><creator>Yang, Chen</creator><creator>Zhang, Limin</creator><creator>Li, Bing</creator><creator>He, Jianbo</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3342-4865</orcidid><orcidid>https://orcid.org/0000-0003-3751-9319</orcidid></search><sort><creationdate>20240529</creationdate><title>Electrochemiluminescence in Graphitic Carbon Nitride Decorated with Silver Nanoparticles for Dopamine Determination Using Machine Learning</title><author>Li, Fang ; Peng, Hao ; Shen, Nuotong ; Yang, Chen ; Zhang, Limin ; Li, Bing ; He, Jianbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a318t-ff21813842dea577e40e2be342710c900fc16e52c6700b5784bf95e7ddd02ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>algorithms</topic><topic>Applications of Polymer, Composite, and Coating Materials</topic><topic>carbon nitride</topic><topic>chemical composition</topic><topic>color</topic><topic>detection limit</topic><topic>dopamine</topic><topic>electrochemiluminescence</topic><topic>graphene</topic><topic>nanocomposites</topic><topic>nanoparticles</topic><topic>nanosilver</topic><topic>prediction</topic><topic>wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Peng, Hao</creatorcontrib><creatorcontrib>Shen, Nuotong</creatorcontrib><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Zhang, Limin</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>He, Jianbo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fang</au><au>Peng, Hao</au><au>Shen, Nuotong</au><au>Yang, Chen</au><au>Zhang, Limin</au><au>Li, Bing</au><au>He, Jianbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemiluminescence in Graphitic Carbon Nitride Decorated with Silver Nanoparticles for Dopamine Determination Using Machine Learning</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-05-29</date><risdate>2024</risdate><volume>16</volume><issue>21</issue><spage>27767</spage><epage>27777</epage><pages>27767-27777</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Electrochemiluminescence (ECL) luminophores with wavelength-tunable multicolor emissions are essential for multicolor ECL imaging detection and multiplexed analysis. In this work, silver nanoparticle (Ag NP)-decorated graphitic carbon nitride (g-CN@Ag) nanocomposites were synthesized. The morphology, chemical composition, structure, and ECL property of g-CN@Ag were investigated. The prepared g-CN, g-CN@Ag1, g-CN@Ag5, and g-CN@Ag10 can produce blue, blue-green, chartreuse, and yellow colored ECL emissions, respectively, by using K2S2O8 as the coreagent. The ECL emission wavelength of g-CN@Ag can be regulated from 460 to 565 nm by modulating the content of the immobilized Ag NPs. Then, a multicolor ECL detection array was fabricated by using g-CN, g-CN@Ag1, g-CN@Ag5, and g-CN@Ag10 as four ECL luminophores. Dopamine was detected based on its inhibition effect on the multicolor ECL emissions. The linear range is from 0.1 nM to 1 mM with the lowest detection limit of 44 pM. Then, machine learning-assisted multiparameter concentration prediction of dopamine was further carried out by combining the deep neural network (DNN) algorithm. This work provides a new avenue to regulate the ECL emission wavelength of g-CN by using the metal nanoparticle modification strategy and presents an effective machine learning-assisted multicolor ECL detection strategy for accurate multiparameter quantitative detection.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38752680</pmid><doi>10.1021/acsami.4c03996</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3342-4865</orcidid><orcidid>https://orcid.org/0000-0003-3751-9319</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-05, Vol.16 (21), p.27767-27777 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153564640 |
source | ACS Publications |
subjects | algorithms Applications of Polymer, Composite, and Coating Materials carbon nitride chemical composition color detection limit dopamine electrochemiluminescence graphene nanocomposites nanoparticles nanosilver prediction wavelengths |
title | Electrochemiluminescence in Graphitic Carbon Nitride Decorated with Silver Nanoparticles for Dopamine Determination Using Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T01%3A59%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemiluminescence%20in%20Graphitic%20Carbon%20Nitride%20Decorated%20with%20Silver%20Nanoparticles%20for%20Dopamine%20Determination%20Using%20Machine%20Learning&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Li,%20Fang&rft.date=2024-05-29&rft.volume=16&rft.issue=21&rft.spage=27767&rft.epage=27777&rft.pages=27767-27777&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c03996&rft_dat=%3Cproquest_cross%3E3055893107%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055893107&rft_id=info:pmid/38752680&rfr_iscdi=true |