Conversion of polycarbosilane to silicon carbide: effect of an active filler and pyrolysis conditions
This paper reports the effect of titanium silicide active filler and the pyrolytic atmosphere (argon and nitrogen) on the ceramic conversion of polycarbosilane. Pyrolysis atmosphere and concentration of titanium silicide active filler was optimized to produce minimum shrinkage polycarbosilane derive...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2023-11, Vol.58 (41), p.16046-16062 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16062 |
---|---|
container_issue | 41 |
container_start_page | 16046 |
container_title | Journal of materials science |
container_volume | 58 |
creator | Vijay, V. Vipin Nair, Sandhya G. Devasia, Renjith |
description | This paper reports the effect of titanium silicide active filler and the pyrolytic atmosphere (argon and nitrogen) on the ceramic conversion of polycarbosilane. Pyrolysis atmosphere and concentration of titanium silicide active filler was optimized to produce minimum shrinkage polycarbosilane derived ceramic. Detailed investigation on the phase evolution and surface morphology of the titanium silicide incorporated polycarbosilane derived ceramic under different pyrolysis atmospheres were carried out. From the results, it was concluded that 40 wt% titanium silicide loaded PCS system heat treated under nitrogen atmosphere was found to be the best precursor to obtain a minimum shrinkage ceramic phase with better properties. Therefore, this system offers the opportunity to expedite the rapid fabrication process of ceramic matrix composites, create flawless ceramic coatings, and produce bulk ceramic materials free from shrinkage. |
doi_str_mv | 10.1007/s10853-023-09056-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153563393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A771884224</galeid><sourcerecordid>A771884224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-19c1afb35aa7bec2fe9f6bc3aa40133a06d81b92ffd5130ca236e13391f1f5123</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpodu0f6AnQS7Nwak-LNnuLSxpGwgE8nEWsjxaFLzWRtKG7L_POC6E5FCE0DDzvMOMXkK-c3bKGWt-Zs5aJSsm8HZM6ar-QFZcNbKqWyY_khVjQlSi1vwz-ZLzPWNMNYKvCKzj9AgphzjR6OkujgdnUx9zGO0EtESKUXBYndNhgF8UvAdXZtpO1LoSHoH6MI6QMDHQ3SFhkxwyRdUQCnbOX8knb8cM3_69R-Tu9_nt-m91efXnYn12WTnZ6FLxznHre6msbXpwwkPnde-ktTXjUlqmh5b3nfB-UFwyZ4XUgIWOe-4VF_KI_Fj67lJ82EMuZhuyg3HeJe6zkVxJpVEgET1-h97HfZpwOiPaVteaSTFTpwu1sSOYMPlYknV4BtjOvwK4OJizpuFtWwtRo-DkjQCZAk9lY_c5m4ub67esWFiXYs4JvNmlsLXpYDgzs61msdWgrebFVjOL5CLKCE8bSK9z_0f1DBtnpNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886460323</pqid></control><display><type>article</type><title>Conversion of polycarbosilane to silicon carbide: effect of an active filler and pyrolysis conditions</title><source>SpringerLink Journals</source><creator>Vijay, V. Vipin ; Nair, Sandhya G. ; Devasia, Renjith</creator><creatorcontrib>Vijay, V. Vipin ; Nair, Sandhya G. ; Devasia, Renjith</creatorcontrib><description>This paper reports the effect of titanium silicide active filler and the pyrolytic atmosphere (argon and nitrogen) on the ceramic conversion of polycarbosilane. Pyrolysis atmosphere and concentration of titanium silicide active filler was optimized to produce minimum shrinkage polycarbosilane derived ceramic. Detailed investigation on the phase evolution and surface morphology of the titanium silicide incorporated polycarbosilane derived ceramic under different pyrolysis atmospheres were carried out. From the results, it was concluded that 40 wt% titanium silicide loaded PCS system heat treated under nitrogen atmosphere was found to be the best precursor to obtain a minimum shrinkage ceramic phase with better properties. Therefore, this system offers the opportunity to expedite the rapid fabrication process of ceramic matrix composites, create flawless ceramic coatings, and produce bulk ceramic materials free from shrinkage.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-023-09056-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Argon ; Ceramic coatings ; Ceramic industry ; Ceramic materials ; Ceramic matrix composites ; Ceramics ; Characterization and Evaluation of Materials ; Chemical Routes to Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Fillers ; heat ; Heat treatment ; Intermetallic compounds ; Materials Science ; Nitrogen ; Polymer Sciences ; Polymers ; Pyrolysis ; shrinkage ; Silicides ; Silicon ; Silicon carbide ; Solid Mechanics ; Titanium</subject><ispartof>Journal of materials science, 2023-11, Vol.58 (41), p.16046-16062</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c376t-19c1afb35aa7bec2fe9f6bc3aa40133a06d81b92ffd5130ca236e13391f1f5123</cites><orcidid>0000-0002-3983-6329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-023-09056-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-023-09056-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Vijay, V. Vipin</creatorcontrib><creatorcontrib>Nair, Sandhya G.</creatorcontrib><creatorcontrib>Devasia, Renjith</creatorcontrib><title>Conversion of polycarbosilane to silicon carbide: effect of an active filler and pyrolysis conditions</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>This paper reports the effect of titanium silicide active filler and the pyrolytic atmosphere (argon and nitrogen) on the ceramic conversion of polycarbosilane. Pyrolysis atmosphere and concentration of titanium silicide active filler was optimized to produce minimum shrinkage polycarbosilane derived ceramic. Detailed investigation on the phase evolution and surface morphology of the titanium silicide incorporated polycarbosilane derived ceramic under different pyrolysis atmospheres were carried out. From the results, it was concluded that 40 wt% titanium silicide loaded PCS system heat treated under nitrogen atmosphere was found to be the best precursor to obtain a minimum shrinkage ceramic phase with better properties. Therefore, this system offers the opportunity to expedite the rapid fabrication process of ceramic matrix composites, create flawless ceramic coatings, and produce bulk ceramic materials free from shrinkage.</description><subject>Argon</subject><subject>Ceramic coatings</subject><subject>Ceramic industry</subject><subject>Ceramic materials</subject><subject>Ceramic matrix composites</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical Routes to Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Fillers</subject><subject>heat</subject><subject>Heat treatment</subject><subject>Intermetallic compounds</subject><subject>Materials Science</subject><subject>Nitrogen</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Pyrolysis</subject><subject>shrinkage</subject><subject>Silicides</subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>Solid Mechanics</subject><subject>Titanium</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU1r3DAQhkVpodu0f6AnQS7Nwak-LNnuLSxpGwgE8nEWsjxaFLzWRtKG7L_POC6E5FCE0DDzvMOMXkK-c3bKGWt-Zs5aJSsm8HZM6ar-QFZcNbKqWyY_khVjQlSi1vwz-ZLzPWNMNYKvCKzj9AgphzjR6OkujgdnUx9zGO0EtESKUXBYndNhgF8UvAdXZtpO1LoSHoH6MI6QMDHQ3SFhkxwyRdUQCnbOX8knb8cM3_69R-Tu9_nt-m91efXnYn12WTnZ6FLxznHre6msbXpwwkPnde-ktTXjUlqmh5b3nfB-UFwyZ4XUgIWOe-4VF_KI_Fj67lJ82EMuZhuyg3HeJe6zkVxJpVEgET1-h97HfZpwOiPaVteaSTFTpwu1sSOYMPlYknV4BtjOvwK4OJizpuFtWwtRo-DkjQCZAk9lY_c5m4ub67esWFiXYs4JvNmlsLXpYDgzs61msdWgrebFVjOL5CLKCE8bSK9z_0f1DBtnpNw</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Vijay, V. Vipin</creator><creator>Nair, Sandhya G.</creator><creator>Devasia, Renjith</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-3983-6329</orcidid></search><sort><creationdate>20231101</creationdate><title>Conversion of polycarbosilane to silicon carbide: effect of an active filler and pyrolysis conditions</title><author>Vijay, V. Vipin ; Nair, Sandhya G. ; Devasia, Renjith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-19c1afb35aa7bec2fe9f6bc3aa40133a06d81b92ffd5130ca236e13391f1f5123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Argon</topic><topic>Ceramic coatings</topic><topic>Ceramic industry</topic><topic>Ceramic materials</topic><topic>Ceramic matrix composites</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical Routes to Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Fillers</topic><topic>heat</topic><topic>Heat treatment</topic><topic>Intermetallic compounds</topic><topic>Materials Science</topic><topic>Nitrogen</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Pyrolysis</topic><topic>shrinkage</topic><topic>Silicides</topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>Solid Mechanics</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vijay, V. Vipin</creatorcontrib><creatorcontrib>Nair, Sandhya G.</creatorcontrib><creatorcontrib>Devasia, Renjith</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vijay, V. Vipin</au><au>Nair, Sandhya G.</au><au>Devasia, Renjith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conversion of polycarbosilane to silicon carbide: effect of an active filler and pyrolysis conditions</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>58</volume><issue>41</issue><spage>16046</spage><epage>16062</epage><pages>16046-16062</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>This paper reports the effect of titanium silicide active filler and the pyrolytic atmosphere (argon and nitrogen) on the ceramic conversion of polycarbosilane. Pyrolysis atmosphere and concentration of titanium silicide active filler was optimized to produce minimum shrinkage polycarbosilane derived ceramic. Detailed investigation on the phase evolution and surface morphology of the titanium silicide incorporated polycarbosilane derived ceramic under different pyrolysis atmospheres were carried out. From the results, it was concluded that 40 wt% titanium silicide loaded PCS system heat treated under nitrogen atmosphere was found to be the best precursor to obtain a minimum shrinkage ceramic phase with better properties. Therefore, this system offers the opportunity to expedite the rapid fabrication process of ceramic matrix composites, create flawless ceramic coatings, and produce bulk ceramic materials free from shrinkage.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-023-09056-4</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3983-6329</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2023-11, Vol.58 (41), p.16046-16062 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153563393 |
source | SpringerLink Journals |
subjects | Argon Ceramic coatings Ceramic industry Ceramic materials Ceramic matrix composites Ceramics Characterization and Evaluation of Materials Chemical Routes to Materials Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Fillers heat Heat treatment Intermetallic compounds Materials Science Nitrogen Polymer Sciences Polymers Pyrolysis shrinkage Silicides Silicon Silicon carbide Solid Mechanics Titanium |
title | Conversion of polycarbosilane to silicon carbide: effect of an active filler and pyrolysis conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A20%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conversion%20of%20polycarbosilane%20to%20silicon%20carbide:%20effect%20of%20an%20active%20filler%20and%20pyrolysis%20conditions&rft.jtitle=Journal%20of%20materials%20science&rft.au=Vijay,%20V.%20Vipin&rft.date=2023-11-01&rft.volume=58&rft.issue=41&rft.spage=16046&rft.epage=16062&rft.pages=16046-16062&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-023-09056-4&rft_dat=%3Cgale_proqu%3EA771884224%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886460323&rft_id=info:pmid/&rft_galeid=A771884224&rfr_iscdi=true |