Ecological drivers of flower–leaf sequences: aridity and proxies for pollinator attraction select for flowering‐first in the American plums

Summary Across temperate forests, many tree species produce flowers before their leaves emerge. This flower–leaf phenological sequence, known as hysteranthy, is generally described as an adaptation for wind pollination. However, this explanation does not address why hysteranthy is also common in bio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2024-06, Vol.242 (5), p.2312-2321
Hauptverfasser: Buonaiuto, D. M., Davies, T. J., Collins, S. C., Wolkovich, E. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2321
container_issue 5
container_start_page 2312
container_title The New phytologist
container_volume 242
creator Buonaiuto, D. M.
Davies, T. J.
Collins, S. C.
Wolkovich, E. M.
description Summary Across temperate forests, many tree species produce flowers before their leaves emerge. This flower–leaf phenological sequence, known as hysteranthy, is generally described as an adaptation for wind pollination. However, this explanation does not address why hysteranthy is also common in biotically pollinated taxa. We quantified flower–leaf sequence variation in the American plums (Prunus, subg. Prunus sect. Prunocerasus), a clade of insect‐pollinated trees, using herbaria specimens and Bayesian hierarchical modeling. We tested two common, but rarely interrogated hypotheses – that hysteranthy confers aridity tolerance and/or pollinator visibility – by modeling the associations between hysteranthy and related traits. To understand how these phenology–trait associations were sensitive to taxonomic scale and flower–leaf sequence classification, we then extended these analyses to all Prunus species in North America. Our findings across two taxonomic levels support the hypotheses that hysteranthy may help temporally partition hydraulic demand to reduce water stress and increase pollinator visibility – thereby reducing selective pressure on inflorescence size. Our results provide foundational insights into the evolution of flower–leaf sequences in the genus Prunus, with implications for understanding these patterns in biotically pollinated plants in general. Our approach suggests a path to advance these hypotheses to other clades, but teasing out drivers fully will require new experiments.
doi_str_mv 10.1111/nph.19685
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153559716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3052224055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3465-7449a513fece625067632cb9f343612c3aab448ca5029f1f1e8964a0ee13c34e3</originalsourceid><addsrcrecordid>eNqFkc1qFTEYhoMo9rS68AYk4EYX0-b_zLgrpVqhWBcK7oacnC9tSiYZk0zr2fUOKvQOeyWNndqFIGaTEJ7vgfd7EXpFyS6tZy-MZ7u0U618ghZUqK5pKV8-RQtCWNsoob5voe2czwkhnVTsOdrirVRUcbVA14cm-njqjPZ4ndwFpIyjxdbHS0i3VzcetMUZfkwQDOT3WCe3dmWDdVjjMcWfDjK2MeExeu-CLvWpS0naFBdDHfRgyj0wG104vb36ZV3KBbuAyxng_aF-Gx3w6Kchv0DPrPYZXj7cO-jbh8OvB0fN8cnHTwf7x43hQslmKUSnJeUWDCgmiVoqzsyqs1xwRZnhWq-EaI2WhHWWWgptp4QmAJRXA_Ad9Hb21hA1XC794LIB73WAOOWeU8ml7JZ1S_9FCaeU01a1FX3zF3oepxRqkEpJxpggUlbq3UyZFHNOYPsxuUGnTU9J_7vQvhba3xda2dcPxmk1wPqR_NNgBfZm4NJ52Pzb1H_-cjQr7wByD62k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052224055</pqid></control><display><type>article</type><title>Ecological drivers of flower–leaf sequences: aridity and proxies for pollinator attraction select for flowering‐first in the American plums</title><source>Wiley Blackwell Single Titles</source><creator>Buonaiuto, D. M. ; Davies, T. J. ; Collins, S. C. ; Wolkovich, E. M.</creator><creatorcontrib>Buonaiuto, D. M. ; Davies, T. J. ; Collins, S. C. ; Wolkovich, E. M.</creatorcontrib><description>Summary Across temperate forests, many tree species produce flowers before their leaves emerge. This flower–leaf phenological sequence, known as hysteranthy, is generally described as an adaptation for wind pollination. However, this explanation does not address why hysteranthy is also common in biotically pollinated taxa. We quantified flower–leaf sequence variation in the American plums (Prunus, subg. Prunus sect. Prunocerasus), a clade of insect‐pollinated trees, using herbaria specimens and Bayesian hierarchical modeling. We tested two common, but rarely interrogated hypotheses – that hysteranthy confers aridity tolerance and/or pollinator visibility – by modeling the associations between hysteranthy and related traits. To understand how these phenology–trait associations were sensitive to taxonomic scale and flower–leaf sequence classification, we then extended these analyses to all Prunus species in North America. Our findings across two taxonomic levels support the hypotheses that hysteranthy may help temporally partition hydraulic demand to reduce water stress and increase pollinator visibility – thereby reducing selective pressure on inflorescence size. Our results provide foundational insights into the evolution of flower–leaf sequences in the genus Prunus, with implications for understanding these patterns in biotically pollinated plants in general. Our approach suggests a path to advance these hypotheses to other clades, but teasing out drivers fully will require new experiments.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.19685</identifier><identifier>PMID: 38561636</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Aridity ; Bayesian analysis ; Bayesian theory ; deciduous forests ; dry environmental conditions ; Flowering ; Flowers ; flower–leaf sequences ; Hypotheses ; hysteranthy ; insect pollination ; Insects ; Leaves ; Modelling ; North America ; phenology ; phylogeny ; plant hydraulics ; Plant species ; Plums ; Pollination ; Pollinators ; Probability theory ; Prunus ; sequence diversity ; Taxonomy ; Temperate forests ; trees ; Visibility ; Water stress ; wind pollination</subject><ispartof>The New phytologist, 2024-06, Vol.242 (5), p.2312-2321</ispartof><rights>2024 The Authors. © 2024 New Phytologist Foundation</rights><rights>2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.</rights><rights>Copyright © 2024 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3465-7449a513fece625067632cb9f343612c3aab448ca5029f1f1e8964a0ee13c34e3</cites><orcidid>0000-0003-3318-5948 ; 0009-0004-0678-3920 ; 0000-0003-4022-2591 ; 0000-0001-7653-893X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.19685$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.19685$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38561636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buonaiuto, D. M.</creatorcontrib><creatorcontrib>Davies, T. J.</creatorcontrib><creatorcontrib>Collins, S. C.</creatorcontrib><creatorcontrib>Wolkovich, E. M.</creatorcontrib><title>Ecological drivers of flower–leaf sequences: aridity and proxies for pollinator attraction select for flowering‐first in the American plums</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary Across temperate forests, many tree species produce flowers before their leaves emerge. This flower–leaf phenological sequence, known as hysteranthy, is generally described as an adaptation for wind pollination. However, this explanation does not address why hysteranthy is also common in biotically pollinated taxa. We quantified flower–leaf sequence variation in the American plums (Prunus, subg. Prunus sect. Prunocerasus), a clade of insect‐pollinated trees, using herbaria specimens and Bayesian hierarchical modeling. We tested two common, but rarely interrogated hypotheses – that hysteranthy confers aridity tolerance and/or pollinator visibility – by modeling the associations between hysteranthy and related traits. To understand how these phenology–trait associations were sensitive to taxonomic scale and flower–leaf sequence classification, we then extended these analyses to all Prunus species in North America. Our findings across two taxonomic levels support the hypotheses that hysteranthy may help temporally partition hydraulic demand to reduce water stress and increase pollinator visibility – thereby reducing selective pressure on inflorescence size. Our results provide foundational insights into the evolution of flower–leaf sequences in the genus Prunus, with implications for understanding these patterns in biotically pollinated plants in general. Our approach suggests a path to advance these hypotheses to other clades, but teasing out drivers fully will require new experiments.</description><subject>Aridity</subject><subject>Bayesian analysis</subject><subject>Bayesian theory</subject><subject>deciduous forests</subject><subject>dry environmental conditions</subject><subject>Flowering</subject><subject>Flowers</subject><subject>flower–leaf sequences</subject><subject>Hypotheses</subject><subject>hysteranthy</subject><subject>insect pollination</subject><subject>Insects</subject><subject>Leaves</subject><subject>Modelling</subject><subject>North America</subject><subject>phenology</subject><subject>phylogeny</subject><subject>plant hydraulics</subject><subject>Plant species</subject><subject>Plums</subject><subject>Pollination</subject><subject>Pollinators</subject><subject>Probability theory</subject><subject>Prunus</subject><subject>sequence diversity</subject><subject>Taxonomy</subject><subject>Temperate forests</subject><subject>trees</subject><subject>Visibility</subject><subject>Water stress</subject><subject>wind pollination</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1qFTEYhoMo9rS68AYk4EYX0-b_zLgrpVqhWBcK7oacnC9tSiYZk0zr2fUOKvQOeyWNndqFIGaTEJ7vgfd7EXpFyS6tZy-MZ7u0U618ghZUqK5pKV8-RQtCWNsoob5voe2czwkhnVTsOdrirVRUcbVA14cm-njqjPZ4ndwFpIyjxdbHS0i3VzcetMUZfkwQDOT3WCe3dmWDdVjjMcWfDjK2MeExeu-CLvWpS0naFBdDHfRgyj0wG104vb36ZV3KBbuAyxng_aF-Gx3w6Kchv0DPrPYZXj7cO-jbh8OvB0fN8cnHTwf7x43hQslmKUSnJeUWDCgmiVoqzsyqs1xwRZnhWq-EaI2WhHWWWgptp4QmAJRXA_Ad9Hb21hA1XC794LIB73WAOOWeU8ml7JZ1S_9FCaeU01a1FX3zF3oepxRqkEpJxpggUlbq3UyZFHNOYPsxuUGnTU9J_7vQvhba3xda2dcPxmk1wPqR_NNgBfZm4NJ52Pzb1H_-cjQr7wByD62k</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Buonaiuto, D. M.</creator><creator>Davies, T. J.</creator><creator>Collins, S. C.</creator><creator>Wolkovich, E. M.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3318-5948</orcidid><orcidid>https://orcid.org/0009-0004-0678-3920</orcidid><orcidid>https://orcid.org/0000-0003-4022-2591</orcidid><orcidid>https://orcid.org/0000-0001-7653-893X</orcidid></search><sort><creationdate>202406</creationdate><title>Ecological drivers of flower–leaf sequences: aridity and proxies for pollinator attraction select for flowering‐first in the American plums</title><author>Buonaiuto, D. M. ; Davies, T. J. ; Collins, S. C. ; Wolkovich, E. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3465-7449a513fece625067632cb9f343612c3aab448ca5029f1f1e8964a0ee13c34e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aridity</topic><topic>Bayesian analysis</topic><topic>Bayesian theory</topic><topic>deciduous forests</topic><topic>dry environmental conditions</topic><topic>Flowering</topic><topic>Flowers</topic><topic>flower–leaf sequences</topic><topic>Hypotheses</topic><topic>hysteranthy</topic><topic>insect pollination</topic><topic>Insects</topic><topic>Leaves</topic><topic>Modelling</topic><topic>North America</topic><topic>phenology</topic><topic>phylogeny</topic><topic>plant hydraulics</topic><topic>Plant species</topic><topic>Plums</topic><topic>Pollination</topic><topic>Pollinators</topic><topic>Probability theory</topic><topic>Prunus</topic><topic>sequence diversity</topic><topic>Taxonomy</topic><topic>Temperate forests</topic><topic>trees</topic><topic>Visibility</topic><topic>Water stress</topic><topic>wind pollination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buonaiuto, D. M.</creatorcontrib><creatorcontrib>Davies, T. J.</creatorcontrib><creatorcontrib>Collins, S. C.</creatorcontrib><creatorcontrib>Wolkovich, E. M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buonaiuto, D. M.</au><au>Davies, T. J.</au><au>Collins, S. C.</au><au>Wolkovich, E. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ecological drivers of flower–leaf sequences: aridity and proxies for pollinator attraction select for flowering‐first in the American plums</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2024-06</date><risdate>2024</risdate><volume>242</volume><issue>5</issue><spage>2312</spage><epage>2321</epage><pages>2312-2321</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Summary Across temperate forests, many tree species produce flowers before their leaves emerge. This flower–leaf phenological sequence, known as hysteranthy, is generally described as an adaptation for wind pollination. However, this explanation does not address why hysteranthy is also common in biotically pollinated taxa. We quantified flower–leaf sequence variation in the American plums (Prunus, subg. Prunus sect. Prunocerasus), a clade of insect‐pollinated trees, using herbaria specimens and Bayesian hierarchical modeling. We tested two common, but rarely interrogated hypotheses – that hysteranthy confers aridity tolerance and/or pollinator visibility – by modeling the associations between hysteranthy and related traits. To understand how these phenology–trait associations were sensitive to taxonomic scale and flower–leaf sequence classification, we then extended these analyses to all Prunus species in North America. Our findings across two taxonomic levels support the hypotheses that hysteranthy may help temporally partition hydraulic demand to reduce water stress and increase pollinator visibility – thereby reducing selective pressure on inflorescence size. Our results provide foundational insights into the evolution of flower–leaf sequences in the genus Prunus, with implications for understanding these patterns in biotically pollinated plants in general. Our approach suggests a path to advance these hypotheses to other clades, but teasing out drivers fully will require new experiments.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38561636</pmid><doi>10.1111/nph.19685</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3318-5948</orcidid><orcidid>https://orcid.org/0009-0004-0678-3920</orcidid><orcidid>https://orcid.org/0000-0003-4022-2591</orcidid><orcidid>https://orcid.org/0000-0001-7653-893X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2024-06, Vol.242 (5), p.2312-2321
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_3153559716
source Wiley Blackwell Single Titles
subjects Aridity
Bayesian analysis
Bayesian theory
deciduous forests
dry environmental conditions
Flowering
Flowers
flower–leaf sequences
Hypotheses
hysteranthy
insect pollination
Insects
Leaves
Modelling
North America
phenology
phylogeny
plant hydraulics
Plant species
Plums
Pollination
Pollinators
Probability theory
Prunus
sequence diversity
Taxonomy
Temperate forests
trees
Visibility
Water stress
wind pollination
title Ecological drivers of flower–leaf sequences: aridity and proxies for pollinator attraction select for flowering‐first in the American plums
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ecological%20drivers%20of%20flower%E2%80%93leaf%20sequences:%20aridity%20and%20proxies%20for%20pollinator%20attraction%20select%20for%20flowering%E2%80%90first%20in%20the%20American%20plums&rft.jtitle=The%20New%20phytologist&rft.au=Buonaiuto,%20D.%20M.&rft.date=2024-06&rft.volume=242&rft.issue=5&rft.spage=2312&rft.epage=2321&rft.pages=2312-2321&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.19685&rft_dat=%3Cproquest_cross%3E3052224055%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052224055&rft_id=info:pmid/38561636&rfr_iscdi=true