Ag Nanoparticles@Au Nanograting Array as a 3D Flexible and Effective Surface-Enhanced Raman Scattering Substrate
Surface-enhanced Raman scattering (SERS) is a powerful analytical technique for chemical identification, but it remains a great challenge to realize the large-scale and well-controlled fabrication of sensitive and repeatable SERS substrates. Here, we report a facile strategy to fabricate centimeter-...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2024-04, Vol.96 (16), p.6112-6121 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6121 |
---|---|
container_issue | 16 |
container_start_page | 6112 |
container_title | Analytical chemistry (Washington) |
container_volume | 96 |
creator | Zhang, Xiang Li, Mingtao Meng, Guowen Huang, Zhulin Zhu, Shuyi Chen, Bin |
description | Surface-enhanced Raman scattering (SERS) is a powerful analytical technique for chemical identification, but it remains a great challenge to realize the large-scale and well-controlled fabrication of sensitive and repeatable SERS substrates. Here, we report a facile strategy to fabricate centimeter-sized periodic Au nanograting (Au-NG) decorated with well-arranged Ag nanoparticles (Ag-NPs) (denoted as Ag-NPs@Au-NG) as a three-dimensional (3D) flexible hybrid SERS substrate with high sensitivity and good reproducibility. The Au-NG patterns with periodic ridges and grooves are fabricated through nanoimprint lithography by employing a low-cost digital versatile disc (DVD) as a master mold, and the Ag-NPs are assembled by a well-controlled interface self-assembly method without any coupling agents. Multiple coupling electromagnetic field effects are created at the nanogaps between the Ag-NPs and Au-NG patterns, leading to high-density and uniform hot spots throughout the substrate. As a result, the Ag-NPs@Au-NG arrays demonstrate an ultrahigh SERS sensitivity as low as 10–13 M for rhodamine 6G with a high average enhancement factor (EF) of 1.85 × 108 and good signal reproducibility. For practical applications, toxic organic pollutants including crystal violet, thiram, and melamine have been successfully detected with high sensitivity at a low detection limit, showing a good perspective in the rapid detection of toxic organic pollutants. |
doi_str_mv | 10.1021/acs.analchem.3c02710 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153558817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3022575633</sourcerecordid><originalsourceid>FETCH-LOGICAL-a358t-3ee9311287f52956307192936cd8687ebdca816497935d1cc0017846520a7ca93</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EotvCP0DIEhcuWWbsOHZurMoWkCqQWDhHs85kmyofi50g-u_rZbc9cICTpdHzvuPRI8QrhCWCwnfk45IG6vwN90vtQVmEJ2KBRkFWOKeeigUA6ExZgDNxHuMtACJg8VycaWdMjtouxH61k19oGPcUptZ3HN-v5j-DXaCpHXZyFQLdSYqSpP4grzr-3W47ljTUct007Kf2F8vNHBrynK2HGxo81_Ib9TTIjadp4nCo2czbOKVKfiGeNdRFfnl6L8SPq_X3y0_Z9dePny9X1xlp46ZMM5caUTnbGFWaQoPFUpW68LUrnOVt7clhkZe21KZG79Nx1uVFup6sp1JfiLfH3n0Yf84cp6pvo-euo4HHOVYajTbGObT_R0EpY9MfdELf_IXejnNIFg5UXjilwUCi8iPlwxhj4Kbah7ancFchVAd5VZJXPcirTvJS7PWpfN72XD-GHmwlAI7AIf64-J-d99Dypgc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046823050</pqid></control><display><type>article</type><title>Ag Nanoparticles@Au Nanograting Array as a 3D Flexible and Effective Surface-Enhanced Raman Scattering Substrate</title><source>ACS Publications</source><creator>Zhang, Xiang ; Li, Mingtao ; Meng, Guowen ; Huang, Zhulin ; Zhu, Shuyi ; Chen, Bin</creator><creatorcontrib>Zhang, Xiang ; Li, Mingtao ; Meng, Guowen ; Huang, Zhulin ; Zhu, Shuyi ; Chen, Bin</creatorcontrib><description>Surface-enhanced Raman scattering (SERS) is a powerful analytical technique for chemical identification, but it remains a great challenge to realize the large-scale and well-controlled fabrication of sensitive and repeatable SERS substrates. Here, we report a facile strategy to fabricate centimeter-sized periodic Au nanograting (Au-NG) decorated with well-arranged Ag nanoparticles (Ag-NPs) (denoted as Ag-NPs@Au-NG) as a three-dimensional (3D) flexible hybrid SERS substrate with high sensitivity and good reproducibility. The Au-NG patterns with periodic ridges and grooves are fabricated through nanoimprint lithography by employing a low-cost digital versatile disc (DVD) as a master mold, and the Ag-NPs are assembled by a well-controlled interface self-assembly method without any coupling agents. Multiple coupling electromagnetic field effects are created at the nanogaps between the Ag-NPs and Au-NG patterns, leading to high-density and uniform hot spots throughout the substrate. As a result, the Ag-NPs@Au-NG arrays demonstrate an ultrahigh SERS sensitivity as low as 10–13 M for rhodamine 6G with a high average enhancement factor (EF) of 1.85 × 108 and good signal reproducibility. For practical applications, toxic organic pollutants including crystal violet, thiram, and melamine have been successfully detected with high sensitivity at a low detection limit, showing a good perspective in the rapid detection of toxic organic pollutants.</description><identifier>ISSN: 0003-2700</identifier><identifier>ISSN: 1520-6882</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.3c02710</identifier><identifier>PMID: 38554137</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>analytical chemistry ; analytical methods ; Arrays ; Coupling agents ; detection limit ; electromagnetic field ; Electromagnetic fields ; Fabrication ; Gentian violet ; Gold ; Grooves ; Melamine ; Nanolithography ; Nanoparticles ; nanosilver ; Optical disks ; Pollutants ; Pollution detection ; Raman spectra ; rapid methods ; Reproducibility ; Rhodamine 6G ; rhodamines ; Self-assembly ; Sensitivity ; Silver ; Substrates ; thiram ; toxicity</subject><ispartof>Analytical chemistry (Washington), 2024-04, Vol.96 (16), p.6112-6121</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Apr 23, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a358t-3ee9311287f52956307192936cd8687ebdca816497935d1cc0017846520a7ca93</cites><orcidid>0000-0003-1522-2039 ; 0000-0002-6183-5234 ; 0000-0002-1625-7236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.3c02710$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.3c02710$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38554137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Li, Mingtao</creatorcontrib><creatorcontrib>Meng, Guowen</creatorcontrib><creatorcontrib>Huang, Zhulin</creatorcontrib><creatorcontrib>Zhu, Shuyi</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><title>Ag Nanoparticles@Au Nanograting Array as a 3D Flexible and Effective Surface-Enhanced Raman Scattering Substrate</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Surface-enhanced Raman scattering (SERS) is a powerful analytical technique for chemical identification, but it remains a great challenge to realize the large-scale and well-controlled fabrication of sensitive and repeatable SERS substrates. Here, we report a facile strategy to fabricate centimeter-sized periodic Au nanograting (Au-NG) decorated with well-arranged Ag nanoparticles (Ag-NPs) (denoted as Ag-NPs@Au-NG) as a three-dimensional (3D) flexible hybrid SERS substrate with high sensitivity and good reproducibility. The Au-NG patterns with periodic ridges and grooves are fabricated through nanoimprint lithography by employing a low-cost digital versatile disc (DVD) as a master mold, and the Ag-NPs are assembled by a well-controlled interface self-assembly method without any coupling agents. Multiple coupling electromagnetic field effects are created at the nanogaps between the Ag-NPs and Au-NG patterns, leading to high-density and uniform hot spots throughout the substrate. As a result, the Ag-NPs@Au-NG arrays demonstrate an ultrahigh SERS sensitivity as low as 10–13 M for rhodamine 6G with a high average enhancement factor (EF) of 1.85 × 108 and good signal reproducibility. For practical applications, toxic organic pollutants including crystal violet, thiram, and melamine have been successfully detected with high sensitivity at a low detection limit, showing a good perspective in the rapid detection of toxic organic pollutants.</description><subject>analytical chemistry</subject><subject>analytical methods</subject><subject>Arrays</subject><subject>Coupling agents</subject><subject>detection limit</subject><subject>electromagnetic field</subject><subject>Electromagnetic fields</subject><subject>Fabrication</subject><subject>Gentian violet</subject><subject>Gold</subject><subject>Grooves</subject><subject>Melamine</subject><subject>Nanolithography</subject><subject>Nanoparticles</subject><subject>nanosilver</subject><subject>Optical disks</subject><subject>Pollutants</subject><subject>Pollution detection</subject><subject>Raman spectra</subject><subject>rapid methods</subject><subject>Reproducibility</subject><subject>Rhodamine 6G</subject><subject>rhodamines</subject><subject>Self-assembly</subject><subject>Sensitivity</subject><subject>Silver</subject><subject>Substrates</subject><subject>thiram</subject><subject>toxicity</subject><issn>0003-2700</issn><issn>1520-6882</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EotvCP0DIEhcuWWbsOHZurMoWkCqQWDhHs85kmyofi50g-u_rZbc9cICTpdHzvuPRI8QrhCWCwnfk45IG6vwN90vtQVmEJ2KBRkFWOKeeigUA6ExZgDNxHuMtACJg8VycaWdMjtouxH61k19oGPcUptZ3HN-v5j-DXaCpHXZyFQLdSYqSpP4grzr-3W47ljTUct007Kf2F8vNHBrynK2HGxo81_Ib9TTIjadp4nCo2czbOKVKfiGeNdRFfnl6L8SPq_X3y0_Z9dePny9X1xlp46ZMM5caUTnbGFWaQoPFUpW68LUrnOVt7clhkZe21KZG79Nx1uVFup6sp1JfiLfH3n0Yf84cp6pvo-euo4HHOVYajTbGObT_R0EpY9MfdELf_IXejnNIFg5UXjilwUCi8iPlwxhj4Kbah7ancFchVAd5VZJXPcirTvJS7PWpfN72XD-GHmwlAI7AIf64-J-d99Dypgc</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Zhang, Xiang</creator><creator>Li, Mingtao</creator><creator>Meng, Guowen</creator><creator>Huang, Zhulin</creator><creator>Zhu, Shuyi</creator><creator>Chen, Bin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-1522-2039</orcidid><orcidid>https://orcid.org/0000-0002-6183-5234</orcidid><orcidid>https://orcid.org/0000-0002-1625-7236</orcidid></search><sort><creationdate>20240423</creationdate><title>Ag Nanoparticles@Au Nanograting Array as a 3D Flexible and Effective Surface-Enhanced Raman Scattering Substrate</title><author>Zhang, Xiang ; Li, Mingtao ; Meng, Guowen ; Huang, Zhulin ; Zhu, Shuyi ; Chen, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a358t-3ee9311287f52956307192936cd8687ebdca816497935d1cc0017846520a7ca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>analytical chemistry</topic><topic>analytical methods</topic><topic>Arrays</topic><topic>Coupling agents</topic><topic>detection limit</topic><topic>electromagnetic field</topic><topic>Electromagnetic fields</topic><topic>Fabrication</topic><topic>Gentian violet</topic><topic>Gold</topic><topic>Grooves</topic><topic>Melamine</topic><topic>Nanolithography</topic><topic>Nanoparticles</topic><topic>nanosilver</topic><topic>Optical disks</topic><topic>Pollutants</topic><topic>Pollution detection</topic><topic>Raman spectra</topic><topic>rapid methods</topic><topic>Reproducibility</topic><topic>Rhodamine 6G</topic><topic>rhodamines</topic><topic>Self-assembly</topic><topic>Sensitivity</topic><topic>Silver</topic><topic>Substrates</topic><topic>thiram</topic><topic>toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Li, Mingtao</creatorcontrib><creatorcontrib>Meng, Guowen</creatorcontrib><creatorcontrib>Huang, Zhulin</creatorcontrib><creatorcontrib>Zhu, Shuyi</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiang</au><au>Li, Mingtao</au><au>Meng, Guowen</au><au>Huang, Zhulin</au><au>Zhu, Shuyi</au><au>Chen, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ag Nanoparticles@Au Nanograting Array as a 3D Flexible and Effective Surface-Enhanced Raman Scattering Substrate</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2024-04-23</date><risdate>2024</risdate><volume>96</volume><issue>16</issue><spage>6112</spage><epage>6121</epage><pages>6112-6121</pages><issn>0003-2700</issn><issn>1520-6882</issn><eissn>1520-6882</eissn><abstract>Surface-enhanced Raman scattering (SERS) is a powerful analytical technique for chemical identification, but it remains a great challenge to realize the large-scale and well-controlled fabrication of sensitive and repeatable SERS substrates. Here, we report a facile strategy to fabricate centimeter-sized periodic Au nanograting (Au-NG) decorated with well-arranged Ag nanoparticles (Ag-NPs) (denoted as Ag-NPs@Au-NG) as a three-dimensional (3D) flexible hybrid SERS substrate with high sensitivity and good reproducibility. The Au-NG patterns with periodic ridges and grooves are fabricated through nanoimprint lithography by employing a low-cost digital versatile disc (DVD) as a master mold, and the Ag-NPs are assembled by a well-controlled interface self-assembly method without any coupling agents. Multiple coupling electromagnetic field effects are created at the nanogaps between the Ag-NPs and Au-NG patterns, leading to high-density and uniform hot spots throughout the substrate. As a result, the Ag-NPs@Au-NG arrays demonstrate an ultrahigh SERS sensitivity as low as 10–13 M for rhodamine 6G with a high average enhancement factor (EF) of 1.85 × 108 and good signal reproducibility. For practical applications, toxic organic pollutants including crystal violet, thiram, and melamine have been successfully detected with high sensitivity at a low detection limit, showing a good perspective in the rapid detection of toxic organic pollutants.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38554137</pmid><doi>10.1021/acs.analchem.3c02710</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1522-2039</orcidid><orcidid>https://orcid.org/0000-0002-6183-5234</orcidid><orcidid>https://orcid.org/0000-0002-1625-7236</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2024-04, Vol.96 (16), p.6112-6121 |
issn | 0003-2700 1520-6882 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153558817 |
source | ACS Publications |
subjects | analytical chemistry analytical methods Arrays Coupling agents detection limit electromagnetic field Electromagnetic fields Fabrication Gentian violet Gold Grooves Melamine Nanolithography Nanoparticles nanosilver Optical disks Pollutants Pollution detection Raman spectra rapid methods Reproducibility Rhodamine 6G rhodamines Self-assembly Sensitivity Silver Substrates thiram toxicity |
title | Ag Nanoparticles@Au Nanograting Array as a 3D Flexible and Effective Surface-Enhanced Raman Scattering Substrate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ag%20Nanoparticles@Au%20Nanograting%20Array%20as%20a%203D%20Flexible%20and%20Effective%20Surface-Enhanced%20Raman%20Scattering%20Substrate&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Zhang,%20Xiang&rft.date=2024-04-23&rft.volume=96&rft.issue=16&rft.spage=6112&rft.epage=6121&rft.pages=6112-6121&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.3c02710&rft_dat=%3Cproquest_cross%3E3022575633%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046823050&rft_id=info:pmid/38554137&rfr_iscdi=true |