Using the inherent elements in yeast biomass to produce Ni2P/N-doped biocarbon composites for efficient hexavalent chromium reduction
The heterogeneous catalytic reduction of Cr(VI) to Cr(III) is an effective strategy for aqueous Cr(VI) contamination abatement, which requires the development of highly efficient, low-cost, and recyclable catalysts. Herein, Ni 2 P/N-doped biocarbon composites (Ni 2 P/N-BC) were fabricated through an...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2023-12, Vol.30 (56), p.119343-119355 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119355 |
---|---|
container_issue | 56 |
container_start_page | 119343 |
container_title | Environmental science and pollution research international |
container_volume | 30 |
creator | Xie, Yi Zhang, Yongkui Wang, Yabo Wang, Xuqian |
description | The heterogeneous catalytic reduction of Cr(VI) to Cr(III) is an effective strategy for aqueous Cr(VI) contamination abatement, which requires the development of highly efficient, low-cost, and recyclable catalysts. Herein, Ni
2
P/N-doped biocarbon composites (Ni
2
P/N-BC) were fabricated through an anoxic pyrolysis process using NaCl and KCl as activators. A precursor of yeast biomass provided the essential C, N, and P elements for Ni
2
P/N-BC formation. When adopted for Cr(VI) reduction in the presence of oxalic acid as a reductant, the fabricated Ni
2
P/N-BC performed superior catalytic activity with a 100% Cr(VI) reduction efficiency within 10 min (Ni
2
P/N-BC-5 = 0.2 g L
−1
, oxalic acid = 0.4 g L
−1
, Cr(VI) = 20 mg L
−1
). Typical affecting parameters, e.g., catalyst dosage, oxalic acid loading, reaction temperature, initial solution pH, and water matrix, were investigated. Ni
2
P/N-BC exhibited good applicability in a broad pH range from 3.0 to 9.0 and in actual aquatic systems. Cr(VI) reduction efficiency remained 92.7% after five recycle runs. Such promising catalytic activity may originate from the well-crystallized Ni
2
P, N-doped biocarbon framework and high specific surface area of the materials. Preliminary reaction mechanism analysis indicated that the favorable charge state of Ni
2
P, fast hydrogen transfer, affinity of oxalic acid to Cr(VI), and inherent electron transfer in the biocarbon matrix contributed to effective Cr(VI) reduction. This work not only provides a facile and low-cost strategy to construct Ni
2
P/N-doped biocarbon nanosheet composite using environmentally benign biomass but also brings new insights for the remediation of Cr(VI) contamination. |
doi_str_mv | 10.1007/s11356-023-30775-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153554804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2898158595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-19f16a09c76691a64e6bed50fb09a6035c147b91f040d57277f872754006c9d33</originalsourceid><addsrcrecordid>eNqFkU-L1jAQh4souK5-AU8BL17qTpImaY6y-A-W1YN7Dmk62TdL27xmWnE_gN_b1FdQPOglM0yeeWD4Nc1zDq84gLkgzqXSLQjZSjBGtfJBc8Y171rTWfvwj_5x84ToDkCAFeas-X5Dabll6wFZWg5YcFkZTjjXSnXC7tHTyoaUZ0_E1syOJY9bQHadxKeL63bMRxz3_-DLkBcW8nzMlFYkFnNhGGMKaZce8Jv_6qe9DYeS57TNrGBVrSkvT5tH0U-Ez37V8-bm7ZvPl-_bq4_vPly-vmqDlHptuY1ce7DBaG251x3qAUcFcQDrNUgVeGcGyyN0MCojjIl9fVUHoIMdpTxvXp689YovG9Lq5kQBp8kvmDdykiupVNdD919U9L2Wordit774C73LW1nqIZWyPVe9sqpS4kSFkokKRncsafbl3nFwe4juFKKrIbqfIbpdLU9LVOHlFstv9T-2fgAlsp-q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898158595</pqid></control><display><type>article</type><title>Using the inherent elements in yeast biomass to produce Ni2P/N-doped biocarbon composites for efficient hexavalent chromium reduction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xie, Yi ; Zhang, Yongkui ; Wang, Yabo ; Wang, Xuqian</creator><creatorcontrib>Xie, Yi ; Zhang, Yongkui ; Wang, Yabo ; Wang, Xuqian</creatorcontrib><description>The heterogeneous catalytic reduction of Cr(VI) to Cr(III) is an effective strategy for aqueous Cr(VI) contamination abatement, which requires the development of highly efficient, low-cost, and recyclable catalysts. Herein, Ni
2
P/N-doped biocarbon composites (Ni
2
P/N-BC) were fabricated through an anoxic pyrolysis process using NaCl and KCl as activators. A precursor of yeast biomass provided the essential C, N, and P elements for Ni
2
P/N-BC formation. When adopted for Cr(VI) reduction in the presence of oxalic acid as a reductant, the fabricated Ni
2
P/N-BC performed superior catalytic activity with a 100% Cr(VI) reduction efficiency within 10 min (Ni
2
P/N-BC-5 = 0.2 g L
−1
, oxalic acid = 0.4 g L
−1
, Cr(VI) = 20 mg L
−1
). Typical affecting parameters, e.g., catalyst dosage, oxalic acid loading, reaction temperature, initial solution pH, and water matrix, were investigated. Ni
2
P/N-BC exhibited good applicability in a broad pH range from 3.0 to 9.0 and in actual aquatic systems. Cr(VI) reduction efficiency remained 92.7% after five recycle runs. Such promising catalytic activity may originate from the well-crystallized Ni
2
P, N-doped biocarbon framework and high specific surface area of the materials. Preliminary reaction mechanism analysis indicated that the favorable charge state of Ni
2
P, fast hydrogen transfer, affinity of oxalic acid to Cr(VI), and inherent electron transfer in the biocarbon matrix contributed to effective Cr(VI) reduction. This work not only provides a facile and low-cost strategy to construct Ni
2
P/N-doped biocarbon nanosheet composite using environmentally benign biomass but also brings new insights for the remediation of Cr(VI) contamination.</description><identifier>ISSN: 1614-7499</identifier><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-023-30775-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acids ; Aquatic environment ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Biomass ; Catalysts ; Catalytic activity ; Chemical reduction ; Chromium ; Composite materials ; Contamination ; Crystallization ; Earth and Environmental Science ; Ecotoxicology ; Electron transfer ; Environment ; Environmental Chemistry ; Environmental Health ; Hexavalent chromium ; hydrogen ; Low cost ; nanosheets ; Oxalic acid ; P elements ; Potassium chloride ; Pyrolysis ; Reaction mechanisms ; Reducing agents ; remediation ; Research Article ; Sodium chloride ; surface area ; temperature ; Waste Water Technology ; Water Management ; Water Pollution Control ; Yeast ; Yeasts</subject><ispartof>Environmental science and pollution research international, 2023-12, Vol.30 (56), p.119343-119355</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c336t-19f16a09c76691a64e6bed50fb09a6035c147b91f040d57277f872754006c9d33</cites><orcidid>0000-0001-8925-5277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-023-30775-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-023-30775-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Xie, Yi</creatorcontrib><creatorcontrib>Zhang, Yongkui</creatorcontrib><creatorcontrib>Wang, Yabo</creatorcontrib><creatorcontrib>Wang, Xuqian</creatorcontrib><title>Using the inherent elements in yeast biomass to produce Ni2P/N-doped biocarbon composites for efficient hexavalent chromium reduction</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><description>The heterogeneous catalytic reduction of Cr(VI) to Cr(III) is an effective strategy for aqueous Cr(VI) contamination abatement, which requires the development of highly efficient, low-cost, and recyclable catalysts. Herein, Ni
2
P/N-doped biocarbon composites (Ni
2
P/N-BC) were fabricated through an anoxic pyrolysis process using NaCl and KCl as activators. A precursor of yeast biomass provided the essential C, N, and P elements for Ni
2
P/N-BC formation. When adopted for Cr(VI) reduction in the presence of oxalic acid as a reductant, the fabricated Ni
2
P/N-BC performed superior catalytic activity with a 100% Cr(VI) reduction efficiency within 10 min (Ni
2
P/N-BC-5 = 0.2 g L
−1
, oxalic acid = 0.4 g L
−1
, Cr(VI) = 20 mg L
−1
). Typical affecting parameters, e.g., catalyst dosage, oxalic acid loading, reaction temperature, initial solution pH, and water matrix, were investigated. Ni
2
P/N-BC exhibited good applicability in a broad pH range from 3.0 to 9.0 and in actual aquatic systems. Cr(VI) reduction efficiency remained 92.7% after five recycle runs. Such promising catalytic activity may originate from the well-crystallized Ni
2
P, N-doped biocarbon framework and high specific surface area of the materials. Preliminary reaction mechanism analysis indicated that the favorable charge state of Ni
2
P, fast hydrogen transfer, affinity of oxalic acid to Cr(VI), and inherent electron transfer in the biocarbon matrix contributed to effective Cr(VI) reduction. This work not only provides a facile and low-cost strategy to construct Ni
2
P/N-doped biocarbon nanosheet composite using environmentally benign biomass but also brings new insights for the remediation of Cr(VI) contamination.</description><subject>Acids</subject><subject>Aquatic environment</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Biomass</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical reduction</subject><subject>Chromium</subject><subject>Composite materials</subject><subject>Contamination</subject><subject>Crystallization</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Electron transfer</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Hexavalent chromium</subject><subject>hydrogen</subject><subject>Low cost</subject><subject>nanosheets</subject><subject>Oxalic acid</subject><subject>P elements</subject><subject>Potassium chloride</subject><subject>Pyrolysis</subject><subject>Reaction mechanisms</subject><subject>Reducing agents</subject><subject>remediation</subject><subject>Research Article</subject><subject>Sodium chloride</subject><subject>surface area</subject><subject>temperature</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1614-7499</issn><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkU-L1jAQh4souK5-AU8BL17qTpImaY6y-A-W1YN7Dmk62TdL27xmWnE_gN_b1FdQPOglM0yeeWD4Nc1zDq84gLkgzqXSLQjZSjBGtfJBc8Y171rTWfvwj_5x84ToDkCAFeas-X5Dabll6wFZWg5YcFkZTjjXSnXC7tHTyoaUZ0_E1syOJY9bQHadxKeL63bMRxz3_-DLkBcW8nzMlFYkFnNhGGMKaZce8Jv_6qe9DYeS57TNrGBVrSkvT5tH0U-Ez37V8-bm7ZvPl-_bq4_vPly-vmqDlHptuY1ce7DBaG251x3qAUcFcQDrNUgVeGcGyyN0MCojjIl9fVUHoIMdpTxvXp689YovG9Lq5kQBp8kvmDdykiupVNdD919U9L2Wordit774C73LW1nqIZWyPVe9sqpS4kSFkokKRncsafbl3nFwe4juFKKrIbqfIbpdLU9LVOHlFstv9T-2fgAlsp-q</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Xie, Yi</creator><creator>Zhang, Yongkui</creator><creator>Wang, Yabo</creator><creator>Wang, Xuqian</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-8925-5277</orcidid></search><sort><creationdate>20231201</creationdate><title>Using the inherent elements in yeast biomass to produce Ni2P/N-doped biocarbon composites for efficient hexavalent chromium reduction</title><author>Xie, Yi ; Zhang, Yongkui ; Wang, Yabo ; Wang, Xuqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-19f16a09c76691a64e6bed50fb09a6035c147b91f040d57277f872754006c9d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acids</topic><topic>Aquatic environment</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Biomass</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical reduction</topic><topic>Chromium</topic><topic>Composite materials</topic><topic>Contamination</topic><topic>Crystallization</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Electron transfer</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Hexavalent chromium</topic><topic>hydrogen</topic><topic>Low cost</topic><topic>nanosheets</topic><topic>Oxalic acid</topic><topic>P elements</topic><topic>Potassium chloride</topic><topic>Pyrolysis</topic><topic>Reaction mechanisms</topic><topic>Reducing agents</topic><topic>remediation</topic><topic>Research Article</topic><topic>Sodium chloride</topic><topic>surface area</topic><topic>temperature</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Yi</creatorcontrib><creatorcontrib>Zhang, Yongkui</creatorcontrib><creatorcontrib>Wang, Yabo</creatorcontrib><creatorcontrib>Wang, Xuqian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Yi</au><au>Zhang, Yongkui</au><au>Wang, Yabo</au><au>Wang, Xuqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using the inherent elements in yeast biomass to produce Ni2P/N-doped biocarbon composites for efficient hexavalent chromium reduction</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>30</volume><issue>56</issue><spage>119343</spage><epage>119355</epage><pages>119343-119355</pages><issn>1614-7499</issn><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>The heterogeneous catalytic reduction of Cr(VI) to Cr(III) is an effective strategy for aqueous Cr(VI) contamination abatement, which requires the development of highly efficient, low-cost, and recyclable catalysts. Herein, Ni
2
P/N-doped biocarbon composites (Ni
2
P/N-BC) were fabricated through an anoxic pyrolysis process using NaCl and KCl as activators. A precursor of yeast biomass provided the essential C, N, and P elements for Ni
2
P/N-BC formation. When adopted for Cr(VI) reduction in the presence of oxalic acid as a reductant, the fabricated Ni
2
P/N-BC performed superior catalytic activity with a 100% Cr(VI) reduction efficiency within 10 min (Ni
2
P/N-BC-5 = 0.2 g L
−1
, oxalic acid = 0.4 g L
−1
, Cr(VI) = 20 mg L
−1
). Typical affecting parameters, e.g., catalyst dosage, oxalic acid loading, reaction temperature, initial solution pH, and water matrix, were investigated. Ni
2
P/N-BC exhibited good applicability in a broad pH range from 3.0 to 9.0 and in actual aquatic systems. Cr(VI) reduction efficiency remained 92.7% after five recycle runs. Such promising catalytic activity may originate from the well-crystallized Ni
2
P, N-doped biocarbon framework and high specific surface area of the materials. Preliminary reaction mechanism analysis indicated that the favorable charge state of Ni
2
P, fast hydrogen transfer, affinity of oxalic acid to Cr(VI), and inherent electron transfer in the biocarbon matrix contributed to effective Cr(VI) reduction. This work not only provides a facile and low-cost strategy to construct Ni
2
P/N-doped biocarbon nanosheet composite using environmentally benign biomass but also brings new insights for the remediation of Cr(VI) contamination.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11356-023-30775-3</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8925-5277</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-7499 |
ispartof | Environmental science and pollution research international, 2023-12, Vol.30 (56), p.119343-119355 |
issn | 1614-7499 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153554804 |
source | SpringerLink Journals - AutoHoldings |
subjects | Acids Aquatic environment Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Biomass Catalysts Catalytic activity Chemical reduction Chromium Composite materials Contamination Crystallization Earth and Environmental Science Ecotoxicology Electron transfer Environment Environmental Chemistry Environmental Health Hexavalent chromium hydrogen Low cost nanosheets Oxalic acid P elements Potassium chloride Pyrolysis Reaction mechanisms Reducing agents remediation Research Article Sodium chloride surface area temperature Waste Water Technology Water Management Water Pollution Control Yeast Yeasts |
title | Using the inherent elements in yeast biomass to produce Ni2P/N-doped biocarbon composites for efficient hexavalent chromium reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A18%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20the%20inherent%20elements%20in%20yeast%20biomass%20to%20produce%20Ni2P/N-doped%20biocarbon%20composites%20for%20efficient%20hexavalent%20chromium%20reduction&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Xie,%20Yi&rft.date=2023-12-01&rft.volume=30&rft.issue=56&rft.spage=119343&rft.epage=119355&rft.pages=119343-119355&rft.issn=1614-7499&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-023-30775-3&rft_dat=%3Cproquest_cross%3E2898158595%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898158595&rft_id=info:pmid/&rfr_iscdi=true |