Reducing Ice Adhesion to Polyelectrolyte Surfaces by Counterion-Mediated Nonfrozen Hydration Water

Hydrophilic anti-icing coatings can be energy-effective passive solutions for combating ice accretion and reducing ice adhesion. However, their underlying mechanisms of action remain inferential and are ill-defined from a molecular perspective. Here, we systematically investigate the influence of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-04, Vol.16 (16), p.21356-21365
Hauptverfasser: Biro, Robert A., Tyrode, Eric C., Thormann, Esben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21365
container_issue 16
container_start_page 21356
container_title ACS applied materials & interfaces
container_volume 16
creator Biro, Robert A.
Tyrode, Eric C.
Thormann, Esben
description Hydrophilic anti-icing coatings can be energy-effective passive solutions for combating ice accretion and reducing ice adhesion. However, their underlying mechanisms of action remain inferential and are ill-defined from a molecular perspective. Here, we systematically investigate the influence of the counterion identity on the shear ice adhesion strength to cationic polymer coatings having quaternary alkyl ammonium moieties as chargeable groups. Temperature-dependent molecular information on the hydrated polymer films is obtained using total internal reflection (TIR) Raman spectroscopy, complemented with differential scanning calorimetry (DSC) and ellipsometry. Ice adhesion measurements show a pronounced counterion-specific behavior with a sharp increase in adhesion at temperatures that depend on the anion identity, following the order Cl– < F– < SCN– < Br– < I–. Linked to the freezing of hydration water, the specific ordering results from differences in ion pairing and the amount of water present within the polymer film. Moreover, similar effects can be promoted by varying the cross-linking density in the coating while keeping the anion identity fixed. These findings shed new light on low ice adhesion mechanisms and may inspire novel approaches for improved anti-icing coatings.
doi_str_mv 10.1021/acsami.4c02434
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153554561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153554561</sourcerecordid><originalsourceid>FETCH-LOGICAL-a318t-4ae52987c1b7d93a864493fc648a713066c46eee0c468474319b559ab74cc76e3</originalsourceid><addsrcrecordid>eNqFkTtPwzAUhS0EoqWwMiKPCCnFjh9JxqoCWqk8xEOMkePcQKokLnYyhF-Pq5RuiOke6X7nDOcgdE7JlJKQXivtVF1OuSYhZ_wAjWnCeRCHIjzca85H6MS5NSGShUQcoxGLpTcnZIyyZ8g7XTYfeKkBz_JPcKVpcGvwk6l6qEC31osW8EtnC6XB4azHc9M1LVhPBveQl6qFHD-YprDmGxq86HOr2m3Mu__YU3RUqMrB2e5O0Nvtzet8Eawe75bz2SpQjMZtwBWIMIkjTbMoT5iKJecJK7TksYooI1JqLgGA-BPziDOaZEIkKou41pEENkGXQ-7Gmq8OXJvWpdNQVaoB07mUUcGE4ELS_1HCIpaIiEmPTgdUW-OchSLd2LJWtk8pSbcTpMME6W4Cb7jYZXdZDfke_-3cA1cD4I3p2nS28a38lfYDV2OQoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037395736</pqid></control><display><type>article</type><title>Reducing Ice Adhesion to Polyelectrolyte Surfaces by Counterion-Mediated Nonfrozen Hydration Water</title><source>American Chemical Society Journals</source><creator>Biro, Robert A. ; Tyrode, Eric C. ; Thormann, Esben</creator><creatorcontrib>Biro, Robert A. ; Tyrode, Eric C. ; Thormann, Esben</creatorcontrib><description>Hydrophilic anti-icing coatings can be energy-effective passive solutions for combating ice accretion and reducing ice adhesion. However, their underlying mechanisms of action remain inferential and are ill-defined from a molecular perspective. Here, we systematically investigate the influence of the counterion identity on the shear ice adhesion strength to cationic polymer coatings having quaternary alkyl ammonium moieties as chargeable groups. Temperature-dependent molecular information on the hydrated polymer films is obtained using total internal reflection (TIR) Raman spectroscopy, complemented with differential scanning calorimetry (DSC) and ellipsometry. Ice adhesion measurements show a pronounced counterion-specific behavior with a sharp increase in adhesion at temperatures that depend on the anion identity, following the order Cl– &lt; F– &lt; SCN– &lt; Br– &lt; I–. Linked to the freezing of hydration water, the specific ordering results from differences in ion pairing and the amount of water present within the polymer film. Moreover, similar effects can be promoted by varying the cross-linking density in the coating while keeping the anion identity fixed. These findings shed new light on low ice adhesion mechanisms and may inspire novel approaches for improved anti-icing coatings.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c02434</identifier><identifier>PMID: 38602190</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>adhesion ; ammonium ; calorimetry ; crosslinking ; hydrophilicity ; ice ; polymers ; Raman spectroscopy ; Surfaces, Interfaces, and Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2024-04, Vol.16 (16), p.21356-21365</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a318t-4ae52987c1b7d93a864493fc648a713066c46eee0c468474319b559ab74cc76e3</cites><orcidid>0000-0002-2364-3493 ; 0000-0003-1221-0227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c02434$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c02434$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38602190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Biro, Robert A.</creatorcontrib><creatorcontrib>Tyrode, Eric C.</creatorcontrib><creatorcontrib>Thormann, Esben</creatorcontrib><title>Reducing Ice Adhesion to Polyelectrolyte Surfaces by Counterion-Mediated Nonfrozen Hydration Water</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Hydrophilic anti-icing coatings can be energy-effective passive solutions for combating ice accretion and reducing ice adhesion. However, their underlying mechanisms of action remain inferential and are ill-defined from a molecular perspective. Here, we systematically investigate the influence of the counterion identity on the shear ice adhesion strength to cationic polymer coatings having quaternary alkyl ammonium moieties as chargeable groups. Temperature-dependent molecular information on the hydrated polymer films is obtained using total internal reflection (TIR) Raman spectroscopy, complemented with differential scanning calorimetry (DSC) and ellipsometry. Ice adhesion measurements show a pronounced counterion-specific behavior with a sharp increase in adhesion at temperatures that depend on the anion identity, following the order Cl– &lt; F– &lt; SCN– &lt; Br– &lt; I–. Linked to the freezing of hydration water, the specific ordering results from differences in ion pairing and the amount of water present within the polymer film. Moreover, similar effects can be promoted by varying the cross-linking density in the coating while keeping the anion identity fixed. These findings shed new light on low ice adhesion mechanisms and may inspire novel approaches for improved anti-icing coatings.</description><subject>adhesion</subject><subject>ammonium</subject><subject>calorimetry</subject><subject>crosslinking</subject><subject>hydrophilicity</subject><subject>ice</subject><subject>polymers</subject><subject>Raman spectroscopy</subject><subject>Surfaces, Interfaces, and Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkTtPwzAUhS0EoqWwMiKPCCnFjh9JxqoCWqk8xEOMkePcQKokLnYyhF-Pq5RuiOke6X7nDOcgdE7JlJKQXivtVF1OuSYhZ_wAjWnCeRCHIjzca85H6MS5NSGShUQcoxGLpTcnZIyyZ8g7XTYfeKkBz_JPcKVpcGvwk6l6qEC31osW8EtnC6XB4azHc9M1LVhPBveQl6qFHD-YprDmGxq86HOr2m3Mu__YU3RUqMrB2e5O0Nvtzet8Eawe75bz2SpQjMZtwBWIMIkjTbMoT5iKJecJK7TksYooI1JqLgGA-BPziDOaZEIkKou41pEENkGXQ-7Gmq8OXJvWpdNQVaoB07mUUcGE4ELS_1HCIpaIiEmPTgdUW-OchSLd2LJWtk8pSbcTpMME6W4Cb7jYZXdZDfke_-3cA1cD4I3p2nS28a38lfYDV2OQoA</recordid><startdate>20240411</startdate><enddate>20240411</enddate><creator>Biro, Robert A.</creator><creator>Tyrode, Eric C.</creator><creator>Thormann, Esben</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-2364-3493</orcidid><orcidid>https://orcid.org/0000-0003-1221-0227</orcidid></search><sort><creationdate>20240411</creationdate><title>Reducing Ice Adhesion to Polyelectrolyte Surfaces by Counterion-Mediated Nonfrozen Hydration Water</title><author>Biro, Robert A. ; Tyrode, Eric C. ; Thormann, Esben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a318t-4ae52987c1b7d93a864493fc648a713066c46eee0c468474319b559ab74cc76e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adhesion</topic><topic>ammonium</topic><topic>calorimetry</topic><topic>crosslinking</topic><topic>hydrophilicity</topic><topic>ice</topic><topic>polymers</topic><topic>Raman spectroscopy</topic><topic>Surfaces, Interfaces, and Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biro, Robert A.</creatorcontrib><creatorcontrib>Tyrode, Eric C.</creatorcontrib><creatorcontrib>Thormann, Esben</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biro, Robert A.</au><au>Tyrode, Eric C.</au><au>Thormann, Esben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing Ice Adhesion to Polyelectrolyte Surfaces by Counterion-Mediated Nonfrozen Hydration Water</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-04-11</date><risdate>2024</risdate><volume>16</volume><issue>16</issue><spage>21356</spage><epage>21365</epage><pages>21356-21365</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Hydrophilic anti-icing coatings can be energy-effective passive solutions for combating ice accretion and reducing ice adhesion. However, their underlying mechanisms of action remain inferential and are ill-defined from a molecular perspective. Here, we systematically investigate the influence of the counterion identity on the shear ice adhesion strength to cationic polymer coatings having quaternary alkyl ammonium moieties as chargeable groups. Temperature-dependent molecular information on the hydrated polymer films is obtained using total internal reflection (TIR) Raman spectroscopy, complemented with differential scanning calorimetry (DSC) and ellipsometry. Ice adhesion measurements show a pronounced counterion-specific behavior with a sharp increase in adhesion at temperatures that depend on the anion identity, following the order Cl– &lt; F– &lt; SCN– &lt; Br– &lt; I–. Linked to the freezing of hydration water, the specific ordering results from differences in ion pairing and the amount of water present within the polymer film. Moreover, similar effects can be promoted by varying the cross-linking density in the coating while keeping the anion identity fixed. These findings shed new light on low ice adhesion mechanisms and may inspire novel approaches for improved anti-icing coatings.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38602190</pmid><doi>10.1021/acsami.4c02434</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2364-3493</orcidid><orcidid>https://orcid.org/0000-0003-1221-0227</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-04, Vol.16 (16), p.21356-21365
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3153554561
source American Chemical Society Journals
subjects adhesion
ammonium
calorimetry
crosslinking
hydrophilicity
ice
polymers
Raman spectroscopy
Surfaces, Interfaces, and Applications
title Reducing Ice Adhesion to Polyelectrolyte Surfaces by Counterion-Mediated Nonfrozen Hydration Water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A23%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20Ice%20Adhesion%20to%20Polyelectrolyte%20Surfaces%20by%20Counterion-Mediated%20Nonfrozen%20Hydration%20Water&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Biro,%20Robert%20A.&rft.date=2024-04-11&rft.volume=16&rft.issue=16&rft.spage=21356&rft.epage=21365&rft.pages=21356-21365&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c02434&rft_dat=%3Cproquest_cross%3E3153554561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037395736&rft_id=info:pmid/38602190&rfr_iscdi=true