An efficient multi-level pre-processing algorithm for the enhancement of dermoscopy images in melanoma detection
In this paper, a multi-level algorithm for pre-processing of dermoscopy images is proposed, which helps in improving the quality of the raw images, making it suitable for skin lesion detection. This multi-level pre-processing method has a positive impact on automated skin lesion segmentation using R...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 2023-11, Vol.61 (11), p.2921-2938 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2938 |
---|---|
container_issue | 11 |
container_start_page | 2921 |
container_title | Medical & biological engineering & computing |
container_volume | 61 |
creator | Jeba Derwin, D. Jeba Singh, O. Priestly Shan, B. Uma Maheswari, K. Lavanya, D. |
description | In this paper, a multi-level algorithm for pre-processing of dermoscopy images is proposed, which helps in improving the quality of the raw images, making it suitable for skin lesion detection. This multi-level pre-processing method has a positive impact on automated skin lesion segmentation using Regularized Extreme Learning Machine. Raw images are subjected to de-noising, illumination correction, contrast enhancement, sharpening, reflection removal, and virtual shaving before the skin lesion segmentation. The Non-Local Means (NLM) filter with lowest Blind Reference less Image Spatial Quality Evaluator (BRISQUE) score exhibits better de-noising of dermoscopy images. To suppress uneven illumination, gamma correction is subjected to the denoised image. The Robust Image Contrast Enhancement (RICE) algorithm is used for contrast enhancement, and produces enhanced images with better structural preservation and negligible loss of information. Unsharp masking for sharpening exhibits low BRISQUE scores for better sharpening of fine details in an image. Output images produced by the phase congruency–based method in virtual shaving show high similarity with ground truth images as the hair is removed completely from the input images. Obtained scores at each stage of pre-processing framework show that the performance is superior compared to all the existing methods, both qualitatively and quantitatively, in terms of uniform contrast, preservation of information content, removal of undesired information, and elimination of artifacts in melanoma images. The output of the proposed system is assessed qualitatively and quantitatively with and without pre-processing of dermoscopy images. From the overall evaluation results, it is found that the segmentation of skin lesion is more efficient using Regularized Extreme Learning Machine if the multi-level pre-processing steps are used in proper sequence.
Graphical Abstract |
doi_str_mv | 10.1007/s11517-023-02897-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153554436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153554436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-adb19ee64a968fc84c5e527d4ce17a237e87a4f28ce03c7f534b5315b63dee273</originalsourceid><addsrcrecordid>eNqFkT1vFDEQhi1ERI7AH6BAlmhoTPy59pVRFD6kSDSktnze8Z2jtb3Yu0T59zi5ABIFFCMX87zveOZF6A2jHxil-rwxppgmlIteZqvJ3TO0YVoyQqWUz9GGMkkJZcycopet3VLKmeLyBToVWglqzLBB80XGEEL0EfKC0zotkUzwAyY8VyBzLR5ai3mP3bQvNS6HhEOpeDkAhnxw2UN6EJaAR6ipNF_mexyT20PDMeMEk8slud5dwC-x5FfoJLipweun9wzdfLz6dvmZXH_99OXy4pp4qfhC3LhjW4BBuu1ggjfSK1Bcj9ID044LDUY7GbjxQIXXQQm5U4Kp3SBGAK7FGXp_9O07fF-hLTbF5mHq_4GyNttZoZSUYvgvyo1UjPbLqY6--wu9LWvNfZFOacMGJo3sFD9SvpbWKgQ7136Tem8ZtQ_R2WN0tkdnH6Ozd1309sl63SUYf0t-ZdUBcQRab-U91D-z_2H7E4C0paE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878161484</pqid></control><display><type>article</type><title>An efficient multi-level pre-processing algorithm for the enhancement of dermoscopy images in melanoma detection</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>EBSCOhost Business Source Complete</source><creator>Jeba Derwin, D. ; Jeba Singh, O. ; Priestly Shan, B. ; Uma Maheswari, K. ; Lavanya, D.</creator><creatorcontrib>Jeba Derwin, D. ; Jeba Singh, O. ; Priestly Shan, B. ; Uma Maheswari, K. ; Lavanya, D.</creatorcontrib><description>In this paper, a multi-level algorithm for pre-processing of dermoscopy images is proposed, which helps in improving the quality of the raw images, making it suitable for skin lesion detection. This multi-level pre-processing method has a positive impact on automated skin lesion segmentation using Regularized Extreme Learning Machine. Raw images are subjected to de-noising, illumination correction, contrast enhancement, sharpening, reflection removal, and virtual shaving before the skin lesion segmentation. The Non-Local Means (NLM) filter with lowest Blind Reference less Image Spatial Quality Evaluator (BRISQUE) score exhibits better de-noising of dermoscopy images. To suppress uneven illumination, gamma correction is subjected to the denoised image. The Robust Image Contrast Enhancement (RICE) algorithm is used for contrast enhancement, and produces enhanced images with better structural preservation and negligible loss of information. Unsharp masking for sharpening exhibits low BRISQUE scores for better sharpening of fine details in an image. Output images produced by the phase congruency–based method in virtual shaving show high similarity with ground truth images as the hair is removed completely from the input images. Obtained scores at each stage of pre-processing framework show that the performance is superior compared to all the existing methods, both qualitatively and quantitatively, in terms of uniform contrast, preservation of information content, removal of undesired information, and elimination of artifacts in melanoma images. The output of the proposed system is assessed qualitatively and quantitatively with and without pre-processing of dermoscopy images. From the overall evaluation results, it is found that the segmentation of skin lesion is more efficient using Regularized Extreme Learning Machine if the multi-level pre-processing steps are used in proper sequence.
Graphical Abstract</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-023-02897-w</identifier><identifier>PMID: 37530886</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial neural networks ; automation ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Computer Applications ; Dermoscopy - methods ; Human Physiology ; Humans ; Illumination ; Image contrast ; Image enhancement ; Image quality ; Image segmentation ; Imaging ; Learning algorithms ; Lesions ; lighting ; Machine learning ; Melanoma ; Melanoma - diagnosis ; Original Article ; Pattern Recognition, Automated - methods ; Preservation ; Radiology ; Reproducibility of Results ; Segmentation ; Sharpening ; Shaving ; Skin Diseases ; Skin lesions ; Skin Neoplasms - diagnosis</subject><ispartof>Medical & biological engineering & computing, 2023-11, Vol.61 (11), p.2921-2938</ispartof><rights>International Federation for Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. International Federation for Medical and Biological Engineering.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-adb19ee64a968fc84c5e527d4ce17a237e87a4f28ce03c7f534b5315b63dee273</citedby><cites>FETCH-LOGICAL-c452t-adb19ee64a968fc84c5e527d4ce17a237e87a4f28ce03c7f534b5315b63dee273</cites><orcidid>0000-0001-7631-5680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-023-02897-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-023-02897-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37530886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeba Derwin, D.</creatorcontrib><creatorcontrib>Jeba Singh, O.</creatorcontrib><creatorcontrib>Priestly Shan, B.</creatorcontrib><creatorcontrib>Uma Maheswari, K.</creatorcontrib><creatorcontrib>Lavanya, D.</creatorcontrib><title>An efficient multi-level pre-processing algorithm for the enhancement of dermoscopy images in melanoma detection</title><title>Medical & biological engineering & computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>In this paper, a multi-level algorithm for pre-processing of dermoscopy images is proposed, which helps in improving the quality of the raw images, making it suitable for skin lesion detection. This multi-level pre-processing method has a positive impact on automated skin lesion segmentation using Regularized Extreme Learning Machine. Raw images are subjected to de-noising, illumination correction, contrast enhancement, sharpening, reflection removal, and virtual shaving before the skin lesion segmentation. The Non-Local Means (NLM) filter with lowest Blind Reference less Image Spatial Quality Evaluator (BRISQUE) score exhibits better de-noising of dermoscopy images. To suppress uneven illumination, gamma correction is subjected to the denoised image. The Robust Image Contrast Enhancement (RICE) algorithm is used for contrast enhancement, and produces enhanced images with better structural preservation and negligible loss of information. Unsharp masking for sharpening exhibits low BRISQUE scores for better sharpening of fine details in an image. Output images produced by the phase congruency–based method in virtual shaving show high similarity with ground truth images as the hair is removed completely from the input images. Obtained scores at each stage of pre-processing framework show that the performance is superior compared to all the existing methods, both qualitatively and quantitatively, in terms of uniform contrast, preservation of information content, removal of undesired information, and elimination of artifacts in melanoma images. The output of the proposed system is assessed qualitatively and quantitatively with and without pre-processing of dermoscopy images. From the overall evaluation results, it is found that the segmentation of skin lesion is more efficient using Regularized Extreme Learning Machine if the multi-level pre-processing steps are used in proper sequence.
Graphical Abstract</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>automation</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Computer Applications</subject><subject>Dermoscopy - methods</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Illumination</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>Imaging</subject><subject>Learning algorithms</subject><subject>Lesions</subject><subject>lighting</subject><subject>Machine learning</subject><subject>Melanoma</subject><subject>Melanoma - diagnosis</subject><subject>Original Article</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Preservation</subject><subject>Radiology</subject><subject>Reproducibility of Results</subject><subject>Segmentation</subject><subject>Sharpening</subject><subject>Shaving</subject><subject>Skin Diseases</subject><subject>Skin lesions</subject><subject>Skin Neoplasms - diagnosis</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkT1vFDEQhi1ERI7AH6BAlmhoTPy59pVRFD6kSDSktnze8Z2jtb3Yu0T59zi5ABIFFCMX87zveOZF6A2jHxil-rwxppgmlIteZqvJ3TO0YVoyQqWUz9GGMkkJZcycopet3VLKmeLyBToVWglqzLBB80XGEEL0EfKC0zotkUzwAyY8VyBzLR5ai3mP3bQvNS6HhEOpeDkAhnxw2UN6EJaAR6ipNF_mexyT20PDMeMEk8slud5dwC-x5FfoJLipweun9wzdfLz6dvmZXH_99OXy4pp4qfhC3LhjW4BBuu1ggjfSK1Bcj9ID044LDUY7GbjxQIXXQQm5U4Kp3SBGAK7FGXp_9O07fF-hLTbF5mHq_4GyNttZoZSUYvgvyo1UjPbLqY6--wu9LWvNfZFOacMGJo3sFD9SvpbWKgQ7136Tem8ZtQ_R2WN0tkdnH6Ozd1309sl63SUYf0t-ZdUBcQRab-U91D-z_2H7E4C0paE</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Jeba Derwin, D.</creator><creator>Jeba Singh, O.</creator><creator>Priestly Shan, B.</creator><creator>Uma Maheswari, K.</creator><creator>Lavanya, D.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-7631-5680</orcidid></search><sort><creationdate>20231101</creationdate><title>An efficient multi-level pre-processing algorithm for the enhancement of dermoscopy images in melanoma detection</title><author>Jeba Derwin, D. ; Jeba Singh, O. ; Priestly Shan, B. ; Uma Maheswari, K. ; Lavanya, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-adb19ee64a968fc84c5e527d4ce17a237e87a4f28ce03c7f534b5315b63dee273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>automation</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Computer Applications</topic><topic>Dermoscopy - methods</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Illumination</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>Imaging</topic><topic>Learning algorithms</topic><topic>Lesions</topic><topic>lighting</topic><topic>Machine learning</topic><topic>Melanoma</topic><topic>Melanoma - diagnosis</topic><topic>Original Article</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Preservation</topic><topic>Radiology</topic><topic>Reproducibility of Results</topic><topic>Segmentation</topic><topic>Sharpening</topic><topic>Shaving</topic><topic>Skin Diseases</topic><topic>Skin lesions</topic><topic>Skin Neoplasms - diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeba Derwin, D.</creatorcontrib><creatorcontrib>Jeba Singh, O.</creatorcontrib><creatorcontrib>Priestly Shan, B.</creatorcontrib><creatorcontrib>Uma Maheswari, K.</creatorcontrib><creatorcontrib>Lavanya, D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Medical & biological engineering & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeba Derwin, D.</au><au>Jeba Singh, O.</au><au>Priestly Shan, B.</au><au>Uma Maheswari, K.</au><au>Lavanya, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient multi-level pre-processing algorithm for the enhancement of dermoscopy images in melanoma detection</atitle><jtitle>Medical & biological engineering & computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>61</volume><issue>11</issue><spage>2921</spage><epage>2938</epage><pages>2921-2938</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>In this paper, a multi-level algorithm for pre-processing of dermoscopy images is proposed, which helps in improving the quality of the raw images, making it suitable for skin lesion detection. This multi-level pre-processing method has a positive impact on automated skin lesion segmentation using Regularized Extreme Learning Machine. Raw images are subjected to de-noising, illumination correction, contrast enhancement, sharpening, reflection removal, and virtual shaving before the skin lesion segmentation. The Non-Local Means (NLM) filter with lowest Blind Reference less Image Spatial Quality Evaluator (BRISQUE) score exhibits better de-noising of dermoscopy images. To suppress uneven illumination, gamma correction is subjected to the denoised image. The Robust Image Contrast Enhancement (RICE) algorithm is used for contrast enhancement, and produces enhanced images with better structural preservation and negligible loss of information. Unsharp masking for sharpening exhibits low BRISQUE scores for better sharpening of fine details in an image. Output images produced by the phase congruency–based method in virtual shaving show high similarity with ground truth images as the hair is removed completely from the input images. Obtained scores at each stage of pre-processing framework show that the performance is superior compared to all the existing methods, both qualitatively and quantitatively, in terms of uniform contrast, preservation of information content, removal of undesired information, and elimination of artifacts in melanoma images. The output of the proposed system is assessed qualitatively and quantitatively with and without pre-processing of dermoscopy images. From the overall evaluation results, it is found that the segmentation of skin lesion is more efficient using Regularized Extreme Learning Machine if the multi-level pre-processing steps are used in proper sequence.
Graphical Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37530886</pmid><doi>10.1007/s11517-023-02897-w</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7631-5680</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-0118 |
ispartof | Medical & biological engineering & computing, 2023-11, Vol.61 (11), p.2921-2938 |
issn | 0140-0118 1741-0444 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153554436 |
source | MEDLINE; SpringerLink Journals; EBSCOhost Business Source Complete |
subjects | Algorithms Artificial neural networks automation Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Computer Applications Dermoscopy - methods Human Physiology Humans Illumination Image contrast Image enhancement Image quality Image segmentation Imaging Learning algorithms Lesions lighting Machine learning Melanoma Melanoma - diagnosis Original Article Pattern Recognition, Automated - methods Preservation Radiology Reproducibility of Results Segmentation Sharpening Shaving Skin Diseases Skin lesions Skin Neoplasms - diagnosis |
title | An efficient multi-level pre-processing algorithm for the enhancement of dermoscopy images in melanoma detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A57%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20multi-level%20pre-processing%20algorithm%20for%20the%20enhancement%20of%20dermoscopy%20images%20in%20melanoma%20detection&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Jeba%20Derwin,%20D.&rft.date=2023-11-01&rft.volume=61&rft.issue=11&rft.spage=2921&rft.epage=2938&rft.pages=2921-2938&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-023-02897-w&rft_dat=%3Cproquest_cross%3E3153554436%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878161484&rft_id=info:pmid/37530886&rfr_iscdi=true |