Design of artificial molecular motor inheriting directionality and scalability

Realizing artificial molecular motors with autonomous functionality and high performance is a major challenge in biophysics. Such motors not only provide new perspectives in biotechnology but also offer a novel approach for the bottom-up elucidation of biological molecular motors. Directionality and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2024-04, Vol.123 (7), p.858-866
Hauptverfasser: Ito, Kenta I., Sato, Yusuke, Toyabe, Shoichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 866
container_issue 7
container_start_page 858
container_title Biophysical journal
container_volume 123
creator Ito, Kenta I.
Sato, Yusuke
Toyabe, Shoichi
description Realizing artificial molecular motors with autonomous functionality and high performance is a major challenge in biophysics. Such motors not only provide new perspectives in biotechnology but also offer a novel approach for the bottom-up elucidation of biological molecular motors. Directionality and scalability are critical factors for practical applications. However, the simultaneous realization of both remains challenging. In this study, we propose a novel design for a rotary motor that can be fabricated using a currently available technology, DNA origami, and validate its functionality through simulations with practical parameters. We demonstrate that the motor rotates unidirectionally and processively in the direction defined by structural asymmetry, which induces kinetic asymmetry in motor motion. The motor also exhibits scalability, such that increasing the number of connections between the motor and stator allows for a larger speed, run length, and stall force.
doi_str_mv 10.1016/j.bpj.2024.02.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153553497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349524001607</els_id><sourcerecordid>3153553497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-8e8df43275928666d933e744b58bd40c6e4411ed3de199b9dbc967ac0e084fb23</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlZ_gBfZo5etk4_N7uJJ_IaiFz2HbDJbs-xHTbZC_70prR4VBmYGnnlhHkLOKcwpUHnVzKtVM2fAxBxYLHlApjQTLAUo5CGZAoBMuSizCTkJoQGgLAN6TCa8EHESbEpe7jC4ZZ8MdaL96GpnnG6TbmjRrFvt4zQOPnH9B3o3un6ZWOfRjG7odevGTaJ7mwSjW1257X5KjmrdBjzb9xl5f7h_u31KF6-Pz7c3i9RwXoxpgYWtBWd5VrJCSmlLzjEXosqKygowEoWgFC23SMuyKm1lSplrAwiFqCvGZ-Ryl7vyw-caw6g6Fwy2re5xWAfFacazLL6e_4uykguWM5aLiNIdavwQgsdarbzrtN8oCmprXDUqGldb4wpYLBlvLvbx66pD-3vxozgC1zsAo48vh14F47A3uDOp7OD-iP8GrheRAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2934272274</pqid></control><display><type>article</type><title>Design of artificial molecular motor inheriting directionality and scalability</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ito, Kenta I. ; Sato, Yusuke ; Toyabe, Shoichi</creator><creatorcontrib>Ito, Kenta I. ; Sato, Yusuke ; Toyabe, Shoichi</creatorcontrib><description>Realizing artificial molecular motors with autonomous functionality and high performance is a major challenge in biophysics. Such motors not only provide new perspectives in biotechnology but also offer a novel approach for the bottom-up elucidation of biological molecular motors. Directionality and scalability are critical factors for practical applications. However, the simultaneous realization of both remains challenging. In this study, we propose a novel design for a rotary motor that can be fabricated using a currently available technology, DNA origami, and validate its functionality through simulations with practical parameters. We demonstrate that the motor rotates unidirectionally and processively in the direction defined by structural asymmetry, which induces kinetic asymmetry in motor motion. The motor also exhibits scalability, such that increasing the number of connections between the motor and stator allows for a larger speed, run length, and stall force.</description><identifier>ISSN: 0006-3495</identifier><identifier>ISSN: 1542-0086</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2024.02.026</identifier><identifier>PMID: 38425042</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>asymmetry ; biotechnology ; DNA ; Molecular Motor Proteins - chemistry</subject><ispartof>Biophysical journal, 2024-04, Vol.123 (7), p.858-866</ispartof><rights>2024 Biophysical Society</rights><rights>Copyright © 2024 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c338t-8e8df43275928666d933e744b58bd40c6e4411ed3de199b9dbc967ac0e084fb23</cites><orcidid>0000-0002-8353-2920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349524001607$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38425042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ito, Kenta I.</creatorcontrib><creatorcontrib>Sato, Yusuke</creatorcontrib><creatorcontrib>Toyabe, Shoichi</creatorcontrib><title>Design of artificial molecular motor inheriting directionality and scalability</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Realizing artificial molecular motors with autonomous functionality and high performance is a major challenge in biophysics. Such motors not only provide new perspectives in biotechnology but also offer a novel approach for the bottom-up elucidation of biological molecular motors. Directionality and scalability are critical factors for practical applications. However, the simultaneous realization of both remains challenging. In this study, we propose a novel design for a rotary motor that can be fabricated using a currently available technology, DNA origami, and validate its functionality through simulations with practical parameters. We demonstrate that the motor rotates unidirectionally and processively in the direction defined by structural asymmetry, which induces kinetic asymmetry in motor motion. The motor also exhibits scalability, such that increasing the number of connections between the motor and stator allows for a larger speed, run length, and stall force.</description><subject>asymmetry</subject><subject>biotechnology</subject><subject>DNA</subject><subject>Molecular Motor Proteins - chemistry</subject><issn>0006-3495</issn><issn>1542-0086</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEQhoMotlZ_gBfZo5etk4_N7uJJ_IaiFz2HbDJbs-xHTbZC_70prR4VBmYGnnlhHkLOKcwpUHnVzKtVM2fAxBxYLHlApjQTLAUo5CGZAoBMuSizCTkJoQGgLAN6TCa8EHESbEpe7jC4ZZ8MdaL96GpnnG6TbmjRrFvt4zQOPnH9B3o3un6ZWOfRjG7odevGTaJ7mwSjW1257X5KjmrdBjzb9xl5f7h_u31KF6-Pz7c3i9RwXoxpgYWtBWd5VrJCSmlLzjEXosqKygowEoWgFC23SMuyKm1lSplrAwiFqCvGZ-Ryl7vyw-caw6g6Fwy2re5xWAfFacazLL6e_4uykguWM5aLiNIdavwQgsdarbzrtN8oCmprXDUqGldb4wpYLBlvLvbx66pD-3vxozgC1zsAo48vh14F47A3uDOp7OD-iP8GrheRAw</recordid><startdate>20240402</startdate><enddate>20240402</enddate><creator>Ito, Kenta I.</creator><creator>Sato, Yusuke</creator><creator>Toyabe, Shoichi</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-8353-2920</orcidid></search><sort><creationdate>20240402</creationdate><title>Design of artificial molecular motor inheriting directionality and scalability</title><author>Ito, Kenta I. ; Sato, Yusuke ; Toyabe, Shoichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-8e8df43275928666d933e744b58bd40c6e4411ed3de199b9dbc967ac0e084fb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>asymmetry</topic><topic>biotechnology</topic><topic>DNA</topic><topic>Molecular Motor Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ito, Kenta I.</creatorcontrib><creatorcontrib>Sato, Yusuke</creatorcontrib><creatorcontrib>Toyabe, Shoichi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ito, Kenta I.</au><au>Sato, Yusuke</au><au>Toyabe, Shoichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of artificial molecular motor inheriting directionality and scalability</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2024-04-02</date><risdate>2024</risdate><volume>123</volume><issue>7</issue><spage>858</spage><epage>866</epage><pages>858-866</pages><issn>0006-3495</issn><issn>1542-0086</issn><eissn>1542-0086</eissn><abstract>Realizing artificial molecular motors with autonomous functionality and high performance is a major challenge in biophysics. Such motors not only provide new perspectives in biotechnology but also offer a novel approach for the bottom-up elucidation of biological molecular motors. Directionality and scalability are critical factors for practical applications. However, the simultaneous realization of both remains challenging. In this study, we propose a novel design for a rotary motor that can be fabricated using a currently available technology, DNA origami, and validate its functionality through simulations with practical parameters. We demonstrate that the motor rotates unidirectionally and processively in the direction defined by structural asymmetry, which induces kinetic asymmetry in motor motion. The motor also exhibits scalability, such that increasing the number of connections between the motor and stator allows for a larger speed, run length, and stall force.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38425042</pmid><doi>10.1016/j.bpj.2024.02.026</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8353-2920</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2024-04, Vol.123 (7), p.858-866
issn 0006-3495
1542-0086
1542-0086
language eng
recordid cdi_proquest_miscellaneous_3153553497
source MEDLINE; Elsevier ScienceDirect Journals
subjects asymmetry
biotechnology
DNA
Molecular Motor Proteins - chemistry
title Design of artificial molecular motor inheriting directionality and scalability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A07%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20artificial%20molecular%20motor%20inheriting%20directionality%20and%20scalability&rft.jtitle=Biophysical%20journal&rft.au=Ito,%20Kenta%20I.&rft.date=2024-04-02&rft.volume=123&rft.issue=7&rft.spage=858&rft.epage=866&rft.pages=858-866&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2024.02.026&rft_dat=%3Cproquest_cross%3E3153553497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2934272274&rft_id=info:pmid/38425042&rft_els_id=S0006349524001607&rfr_iscdi=true