Design of artificial molecular motor inheriting directionality and scalability
Realizing artificial molecular motors with autonomous functionality and high performance is a major challenge in biophysics. Such motors not only provide new perspectives in biotechnology but also offer a novel approach for the bottom-up elucidation of biological molecular motors. Directionality and...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2024-04, Vol.123 (7), p.858-866 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 866 |
---|---|
container_issue | 7 |
container_start_page | 858 |
container_title | Biophysical journal |
container_volume | 123 |
creator | Ito, Kenta I. Sato, Yusuke Toyabe, Shoichi |
description | Realizing artificial molecular motors with autonomous functionality and high performance is a major challenge in biophysics. Such motors not only provide new perspectives in biotechnology but also offer a novel approach for the bottom-up elucidation of biological molecular motors. Directionality and scalability are critical factors for practical applications. However, the simultaneous realization of both remains challenging. In this study, we propose a novel design for a rotary motor that can be fabricated using a currently available technology, DNA origami, and validate its functionality through simulations with practical parameters. We demonstrate that the motor rotates unidirectionally and processively in the direction defined by structural asymmetry, which induces kinetic asymmetry in motor motion. The motor also exhibits scalability, such that increasing the number of connections between the motor and stator allows for a larger speed, run length, and stall force. |
doi_str_mv | 10.1016/j.bpj.2024.02.026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153553497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349524001607</els_id><sourcerecordid>3153553497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-8e8df43275928666d933e744b58bd40c6e4411ed3de199b9dbc967ac0e084fb23</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlZ_gBfZo5etk4_N7uJJ_IaiFz2HbDJbs-xHTbZC_70prR4VBmYGnnlhHkLOKcwpUHnVzKtVM2fAxBxYLHlApjQTLAUo5CGZAoBMuSizCTkJoQGgLAN6TCa8EHESbEpe7jC4ZZ8MdaL96GpnnG6TbmjRrFvt4zQOPnH9B3o3un6ZWOfRjG7odevGTaJ7mwSjW1257X5KjmrdBjzb9xl5f7h_u31KF6-Pz7c3i9RwXoxpgYWtBWd5VrJCSmlLzjEXosqKygowEoWgFC23SMuyKm1lSplrAwiFqCvGZ-Ryl7vyw-caw6g6Fwy2re5xWAfFacazLL6e_4uykguWM5aLiNIdavwQgsdarbzrtN8oCmprXDUqGldb4wpYLBlvLvbx66pD-3vxozgC1zsAo48vh14F47A3uDOp7OD-iP8GrheRAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2934272274</pqid></control><display><type>article</type><title>Design of artificial molecular motor inheriting directionality and scalability</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ito, Kenta I. ; Sato, Yusuke ; Toyabe, Shoichi</creator><creatorcontrib>Ito, Kenta I. ; Sato, Yusuke ; Toyabe, Shoichi</creatorcontrib><description>Realizing artificial molecular motors with autonomous functionality and high performance is a major challenge in biophysics. Such motors not only provide new perspectives in biotechnology but also offer a novel approach for the bottom-up elucidation of biological molecular motors. Directionality and scalability are critical factors for practical applications. However, the simultaneous realization of both remains challenging. In this study, we propose a novel design for a rotary motor that can be fabricated using a currently available technology, DNA origami, and validate its functionality through simulations with practical parameters. We demonstrate that the motor rotates unidirectionally and processively in the direction defined by structural asymmetry, which induces kinetic asymmetry in motor motion. The motor also exhibits scalability, such that increasing the number of connections between the motor and stator allows for a larger speed, run length, and stall force.</description><identifier>ISSN: 0006-3495</identifier><identifier>ISSN: 1542-0086</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2024.02.026</identifier><identifier>PMID: 38425042</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>asymmetry ; biotechnology ; DNA ; Molecular Motor Proteins - chemistry</subject><ispartof>Biophysical journal, 2024-04, Vol.123 (7), p.858-866</ispartof><rights>2024 Biophysical Society</rights><rights>Copyright © 2024 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c338t-8e8df43275928666d933e744b58bd40c6e4411ed3de199b9dbc967ac0e084fb23</cites><orcidid>0000-0002-8353-2920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349524001607$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38425042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ito, Kenta I.</creatorcontrib><creatorcontrib>Sato, Yusuke</creatorcontrib><creatorcontrib>Toyabe, Shoichi</creatorcontrib><title>Design of artificial molecular motor inheriting directionality and scalability</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Realizing artificial molecular motors with autonomous functionality and high performance is a major challenge in biophysics. Such motors not only provide new perspectives in biotechnology but also offer a novel approach for the bottom-up elucidation of biological molecular motors. Directionality and scalability are critical factors for practical applications. However, the simultaneous realization of both remains challenging. In this study, we propose a novel design for a rotary motor that can be fabricated using a currently available technology, DNA origami, and validate its functionality through simulations with practical parameters. We demonstrate that the motor rotates unidirectionally and processively in the direction defined by structural asymmetry, which induces kinetic asymmetry in motor motion. The motor also exhibits scalability, such that increasing the number of connections between the motor and stator allows for a larger speed, run length, and stall force.</description><subject>asymmetry</subject><subject>biotechnology</subject><subject>DNA</subject><subject>Molecular Motor Proteins - chemistry</subject><issn>0006-3495</issn><issn>1542-0086</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEQhoMotlZ_gBfZo5etk4_N7uJJ_IaiFz2HbDJbs-xHTbZC_70prR4VBmYGnnlhHkLOKcwpUHnVzKtVM2fAxBxYLHlApjQTLAUo5CGZAoBMuSizCTkJoQGgLAN6TCa8EHESbEpe7jC4ZZ8MdaL96GpnnG6TbmjRrFvt4zQOPnH9B3o3un6ZWOfRjG7odevGTaJ7mwSjW1257X5KjmrdBjzb9xl5f7h_u31KF6-Pz7c3i9RwXoxpgYWtBWd5VrJCSmlLzjEXosqKygowEoWgFC23SMuyKm1lSplrAwiFqCvGZ-Ryl7vyw-caw6g6Fwy2re5xWAfFacazLL6e_4uykguWM5aLiNIdavwQgsdarbzrtN8oCmprXDUqGldb4wpYLBlvLvbx66pD-3vxozgC1zsAo48vh14F47A3uDOp7OD-iP8GrheRAw</recordid><startdate>20240402</startdate><enddate>20240402</enddate><creator>Ito, Kenta I.</creator><creator>Sato, Yusuke</creator><creator>Toyabe, Shoichi</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-8353-2920</orcidid></search><sort><creationdate>20240402</creationdate><title>Design of artificial molecular motor inheriting directionality and scalability</title><author>Ito, Kenta I. ; Sato, Yusuke ; Toyabe, Shoichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-8e8df43275928666d933e744b58bd40c6e4411ed3de199b9dbc967ac0e084fb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>asymmetry</topic><topic>biotechnology</topic><topic>DNA</topic><topic>Molecular Motor Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ito, Kenta I.</creatorcontrib><creatorcontrib>Sato, Yusuke</creatorcontrib><creatorcontrib>Toyabe, Shoichi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ito, Kenta I.</au><au>Sato, Yusuke</au><au>Toyabe, Shoichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of artificial molecular motor inheriting directionality and scalability</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2024-04-02</date><risdate>2024</risdate><volume>123</volume><issue>7</issue><spage>858</spage><epage>866</epage><pages>858-866</pages><issn>0006-3495</issn><issn>1542-0086</issn><eissn>1542-0086</eissn><abstract>Realizing artificial molecular motors with autonomous functionality and high performance is a major challenge in biophysics. Such motors not only provide new perspectives in biotechnology but also offer a novel approach for the bottom-up elucidation of biological molecular motors. Directionality and scalability are critical factors for practical applications. However, the simultaneous realization of both remains challenging. In this study, we propose a novel design for a rotary motor that can be fabricated using a currently available technology, DNA origami, and validate its functionality through simulations with practical parameters. We demonstrate that the motor rotates unidirectionally and processively in the direction defined by structural asymmetry, which induces kinetic asymmetry in motor motion. The motor also exhibits scalability, such that increasing the number of connections between the motor and stator allows for a larger speed, run length, and stall force.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38425042</pmid><doi>10.1016/j.bpj.2024.02.026</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8353-2920</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2024-04, Vol.123 (7), p.858-866 |
issn | 0006-3495 1542-0086 1542-0086 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153553497 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | asymmetry biotechnology DNA Molecular Motor Proteins - chemistry |
title | Design of artificial molecular motor inheriting directionality and scalability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A07%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20artificial%20molecular%20motor%20inheriting%20directionality%20and%20scalability&rft.jtitle=Biophysical%20journal&rft.au=Ito,%20Kenta%20I.&rft.date=2024-04-02&rft.volume=123&rft.issue=7&rft.spage=858&rft.epage=866&rft.pages=858-866&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2024.02.026&rft_dat=%3Cproquest_cross%3E3153553497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2934272274&rft_id=info:pmid/38425042&rft_els_id=S0006349524001607&rfr_iscdi=true |