A facile graft-repair strategy: Subsurface Na2Sx heterostructures in hard carbon anodes for high-capacity and ultrafast sodium-ion storage

Hard carbon (HC) anodes hold great promise for sodium-ion batteries (SIBs), yet they still suffer from insufficient rate capability and low initial coulombic efficiency (ICE). Herein, an innovative approach based on the synergistic graft-repair mechanism is proposed to create the multifunctional Na2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2024-03, Vol.221, p.118922, Article 118922
Hauptverfasser: Huang, Yanzhong, Yang, Huachao, Zheng, Zhouwei, Chen, Pengpeng, Zhou, Runyi, Yan, Jianhua, Cen, Kefa, Bo, Zheng, Ostrikov, Kostya (Ken)
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 118922
container_title Carbon (New York)
container_volume 221
creator Huang, Yanzhong
Yang, Huachao
Zheng, Zhouwei
Chen, Pengpeng
Zhou, Runyi
Yan, Jianhua
Cen, Kefa
Bo, Zheng
Ostrikov, Kostya (Ken)
description Hard carbon (HC) anodes hold great promise for sodium-ion batteries (SIBs), yet they still suffer from insufficient rate capability and low initial coulombic efficiency (ICE). Herein, an innovative approach based on the synergistic graft-repair mechanism is proposed to create the multifunctional Na2Sx heterostructure within the subsurface of HC via a facile ball-milling and calcination method. This structure with specific disulfide bonds enlarges the carbon layer for fast ion transfer, offers extra S active sites to boost capacity, and catalytically reduces electrolytes to form an inorganic-dominated and thinner solid electrolyte interface (∼7.1 nm). The introduced Na+ ions compensate for the irreversible Na uptake at intrinsic defects and oxygen-containing groups. These effects are validated by GITT, EIS, Raman, and depth-profiling XPS measurements. The optimized hard carbon delivers an ultrahigh reversible capacity with superior ICE (514.8 mAh g−1 at 0.05 A g−1 with ICE of 84.1%) and excellent rate capability (87.5 mAh g−1 at 40 A g−1) simultaneously. DFT calculations reveal that the moderate S/Na ratio yields suitable adsorption energy, maintaining the balance of rate performance and ICE. The revealed mechanism of ion transport based on graft-repair effects contributes to boosting the key SIB performance indicators required for practical applications. [Display omitted] •Na2Sx heterostructures are anchored into hard carbon by ball-milling and calcination.•The graft−repair effect enables ultrahigh rate and superior ICE of Na-ion storage.•Disulfide bonds enlarges the carbon layer and catalytically reduces electrolytes.•Electrode and interface traits are studied by ex-situ Raman and depth-profiling XPS.•The moderate S/Na ratio yields the well-balance between rate capacity and ICE.
doi_str_mv 10.1016/j.carbon.2024.118922
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153552078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622324001416</els_id><sourcerecordid>3153552078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-914babfe558e4c03c493093fec0be573b93cefff545dd55b3116d307a8467ec93</originalsourceid><addsrcrecordid>eNp9UMtuFDEQtBCRWAJ_wMFHLrPxc8fDASmKgCBFcAicLY_d3vVqdry0PSj7C3w1joYzp1Z3V1V3FSHvONtyxnc3x613OOZ5K5hQW87NIMQLsuGml500A39JNowx0-2EkK_I61KOrVWGqw35c0uj82kCukcXa4dwdglpqegq7C8f6OMylgUbBug3Jx6f6AEqYG6AxdcFodA004PDQNcfqJtzaNOYkR7S_tB5d24H6qUtAl2mJhxdqbTkkJZTlxqj1IxuD2_IVXRTgbf_6jX5-fnTj7v77uH7l693tw-dF8bUbuBqdGMErQ0oz6RXg2SDjODZCLqX4yA9xBi10iFoPUrOd0Gy3hm168EP8pq8X3XPmH8tUKo9peJhmtwMeSlWci21Fqw3DapWqG-OC0K0Z0wnhxfLmX2O3h7tats-R2_X6Bvt40qDZuN3ArTFJ5g9hITgqw05_V_gLyMFkYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153552078</pqid></control><display><type>article</type><title>A facile graft-repair strategy: Subsurface Na2Sx heterostructures in hard carbon anodes for high-capacity and ultrafast sodium-ion storage</title><source>Elsevier ScienceDirect Journals</source><creator>Huang, Yanzhong ; Yang, Huachao ; Zheng, Zhouwei ; Chen, Pengpeng ; Zhou, Runyi ; Yan, Jianhua ; Cen, Kefa ; Bo, Zheng ; Ostrikov, Kostya (Ken)</creator><creatorcontrib>Huang, Yanzhong ; Yang, Huachao ; Zheng, Zhouwei ; Chen, Pengpeng ; Zhou, Runyi ; Yan, Jianhua ; Cen, Kefa ; Bo, Zheng ; Ostrikov, Kostya (Ken)</creatorcontrib><description>Hard carbon (HC) anodes hold great promise for sodium-ion batteries (SIBs), yet they still suffer from insufficient rate capability and low initial coulombic efficiency (ICE). Herein, an innovative approach based on the synergistic graft-repair mechanism is proposed to create the multifunctional Na2Sx heterostructure within the subsurface of HC via a facile ball-milling and calcination method. This structure with specific disulfide bonds enlarges the carbon layer for fast ion transfer, offers extra S active sites to boost capacity, and catalytically reduces electrolytes to form an inorganic-dominated and thinner solid electrolyte interface (∼7.1 nm). The introduced Na+ ions compensate for the irreversible Na uptake at intrinsic defects and oxygen-containing groups. These effects are validated by GITT, EIS, Raman, and depth-profiling XPS measurements. The optimized hard carbon delivers an ultrahigh reversible capacity with superior ICE (514.8 mAh g−1 at 0.05 A g−1 with ICE of 84.1%) and excellent rate capability (87.5 mAh g−1 at 40 A g−1) simultaneously. DFT calculations reveal that the moderate S/Na ratio yields suitable adsorption energy, maintaining the balance of rate performance and ICE. The revealed mechanism of ion transport based on graft-repair effects contributes to boosting the key SIB performance indicators required for practical applications. [Display omitted] •Na2Sx heterostructures are anchored into hard carbon by ball-milling and calcination.•The graft−repair effect enables ultrahigh rate and superior ICE of Na-ion storage.•Disulfide bonds enlarges the carbon layer and catalytically reduces electrolytes.•Electrode and interface traits are studied by ex-situ Raman and depth-profiling XPS.•The moderate S/Na ratio yields the well-balance between rate capacity and ICE.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2024.118922</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>adsorption ; carbon ; disulfides ; electrolytes ; energy ; Hard carbon ; Multifunction Na2Sx heterostructures ; Rate capability ; Sodium-ion batteries ; Ultrahigh reversible capacity</subject><ispartof>Carbon (New York), 2024-03, Vol.221, p.118922, Article 118922</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-914babfe558e4c03c493093fec0be573b93cefff545dd55b3116d307a8467ec93</cites><orcidid>0000-0001-9308-7624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2024.118922$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Huang, Yanzhong</creatorcontrib><creatorcontrib>Yang, Huachao</creatorcontrib><creatorcontrib>Zheng, Zhouwei</creatorcontrib><creatorcontrib>Chen, Pengpeng</creatorcontrib><creatorcontrib>Zhou, Runyi</creatorcontrib><creatorcontrib>Yan, Jianhua</creatorcontrib><creatorcontrib>Cen, Kefa</creatorcontrib><creatorcontrib>Bo, Zheng</creatorcontrib><creatorcontrib>Ostrikov, Kostya (Ken)</creatorcontrib><title>A facile graft-repair strategy: Subsurface Na2Sx heterostructures in hard carbon anodes for high-capacity and ultrafast sodium-ion storage</title><title>Carbon (New York)</title><description>Hard carbon (HC) anodes hold great promise for sodium-ion batteries (SIBs), yet they still suffer from insufficient rate capability and low initial coulombic efficiency (ICE). Herein, an innovative approach based on the synergistic graft-repair mechanism is proposed to create the multifunctional Na2Sx heterostructure within the subsurface of HC via a facile ball-milling and calcination method. This structure with specific disulfide bonds enlarges the carbon layer for fast ion transfer, offers extra S active sites to boost capacity, and catalytically reduces electrolytes to form an inorganic-dominated and thinner solid electrolyte interface (∼7.1 nm). The introduced Na+ ions compensate for the irreversible Na uptake at intrinsic defects and oxygen-containing groups. These effects are validated by GITT, EIS, Raman, and depth-profiling XPS measurements. The optimized hard carbon delivers an ultrahigh reversible capacity with superior ICE (514.8 mAh g−1 at 0.05 A g−1 with ICE of 84.1%) and excellent rate capability (87.5 mAh g−1 at 40 A g−1) simultaneously. DFT calculations reveal that the moderate S/Na ratio yields suitable adsorption energy, maintaining the balance of rate performance and ICE. The revealed mechanism of ion transport based on graft-repair effects contributes to boosting the key SIB performance indicators required for practical applications. [Display omitted] •Na2Sx heterostructures are anchored into hard carbon by ball-milling and calcination.•The graft−repair effect enables ultrahigh rate and superior ICE of Na-ion storage.•Disulfide bonds enlarges the carbon layer and catalytically reduces electrolytes.•Electrode and interface traits are studied by ex-situ Raman and depth-profiling XPS.•The moderate S/Na ratio yields the well-balance between rate capacity and ICE.</description><subject>adsorption</subject><subject>carbon</subject><subject>disulfides</subject><subject>electrolytes</subject><subject>energy</subject><subject>Hard carbon</subject><subject>Multifunction Na2Sx heterostructures</subject><subject>Rate capability</subject><subject>Sodium-ion batteries</subject><subject>Ultrahigh reversible capacity</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtuFDEQtBCRWAJ_wMFHLrPxc8fDASmKgCBFcAicLY_d3vVqdry0PSj7C3w1joYzp1Z3V1V3FSHvONtyxnc3x613OOZ5K5hQW87NIMQLsuGml500A39JNowx0-2EkK_I61KOrVWGqw35c0uj82kCukcXa4dwdglpqegq7C8f6OMylgUbBug3Jx6f6AEqYG6AxdcFodA004PDQNcfqJtzaNOYkR7S_tB5d24H6qUtAl2mJhxdqbTkkJZTlxqj1IxuD2_IVXRTgbf_6jX5-fnTj7v77uH7l693tw-dF8bUbuBqdGMErQ0oz6RXg2SDjODZCLqX4yA9xBi10iFoPUrOd0Gy3hm168EP8pq8X3XPmH8tUKo9peJhmtwMeSlWci21Fqw3DapWqG-OC0K0Z0wnhxfLmX2O3h7tats-R2_X6Bvt40qDZuN3ArTFJ5g9hITgqw05_V_gLyMFkYk</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Huang, Yanzhong</creator><creator>Yang, Huachao</creator><creator>Zheng, Zhouwei</creator><creator>Chen, Pengpeng</creator><creator>Zhou, Runyi</creator><creator>Yan, Jianhua</creator><creator>Cen, Kefa</creator><creator>Bo, Zheng</creator><creator>Ostrikov, Kostya (Ken)</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9308-7624</orcidid></search><sort><creationdate>202403</creationdate><title>A facile graft-repair strategy: Subsurface Na2Sx heterostructures in hard carbon anodes for high-capacity and ultrafast sodium-ion storage</title><author>Huang, Yanzhong ; Yang, Huachao ; Zheng, Zhouwei ; Chen, Pengpeng ; Zhou, Runyi ; Yan, Jianhua ; Cen, Kefa ; Bo, Zheng ; Ostrikov, Kostya (Ken)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-914babfe558e4c03c493093fec0be573b93cefff545dd55b3116d307a8467ec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adsorption</topic><topic>carbon</topic><topic>disulfides</topic><topic>electrolytes</topic><topic>energy</topic><topic>Hard carbon</topic><topic>Multifunction Na2Sx heterostructures</topic><topic>Rate capability</topic><topic>Sodium-ion batteries</topic><topic>Ultrahigh reversible capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yanzhong</creatorcontrib><creatorcontrib>Yang, Huachao</creatorcontrib><creatorcontrib>Zheng, Zhouwei</creatorcontrib><creatorcontrib>Chen, Pengpeng</creatorcontrib><creatorcontrib>Zhou, Runyi</creatorcontrib><creatorcontrib>Yan, Jianhua</creatorcontrib><creatorcontrib>Cen, Kefa</creatorcontrib><creatorcontrib>Bo, Zheng</creatorcontrib><creatorcontrib>Ostrikov, Kostya (Ken)</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yanzhong</au><au>Yang, Huachao</au><au>Zheng, Zhouwei</au><au>Chen, Pengpeng</au><au>Zhou, Runyi</au><au>Yan, Jianhua</au><au>Cen, Kefa</au><au>Bo, Zheng</au><au>Ostrikov, Kostya (Ken)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A facile graft-repair strategy: Subsurface Na2Sx heterostructures in hard carbon anodes for high-capacity and ultrafast sodium-ion storage</atitle><jtitle>Carbon (New York)</jtitle><date>2024-03</date><risdate>2024</risdate><volume>221</volume><spage>118922</spage><pages>118922-</pages><artnum>118922</artnum><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Hard carbon (HC) anodes hold great promise for sodium-ion batteries (SIBs), yet they still suffer from insufficient rate capability and low initial coulombic efficiency (ICE). Herein, an innovative approach based on the synergistic graft-repair mechanism is proposed to create the multifunctional Na2Sx heterostructure within the subsurface of HC via a facile ball-milling and calcination method. This structure with specific disulfide bonds enlarges the carbon layer for fast ion transfer, offers extra S active sites to boost capacity, and catalytically reduces electrolytes to form an inorganic-dominated and thinner solid electrolyte interface (∼7.1 nm). The introduced Na+ ions compensate for the irreversible Na uptake at intrinsic defects and oxygen-containing groups. These effects are validated by GITT, EIS, Raman, and depth-profiling XPS measurements. The optimized hard carbon delivers an ultrahigh reversible capacity with superior ICE (514.8 mAh g−1 at 0.05 A g−1 with ICE of 84.1%) and excellent rate capability (87.5 mAh g−1 at 40 A g−1) simultaneously. DFT calculations reveal that the moderate S/Na ratio yields suitable adsorption energy, maintaining the balance of rate performance and ICE. The revealed mechanism of ion transport based on graft-repair effects contributes to boosting the key SIB performance indicators required for practical applications. [Display omitted] •Na2Sx heterostructures are anchored into hard carbon by ball-milling and calcination.•The graft−repair effect enables ultrahigh rate and superior ICE of Na-ion storage.•Disulfide bonds enlarges the carbon layer and catalytically reduces electrolytes.•Electrode and interface traits are studied by ex-situ Raman and depth-profiling XPS.•The moderate S/Na ratio yields the well-balance between rate capacity and ICE.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2024.118922</doi><orcidid>https://orcid.org/0000-0001-9308-7624</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2024-03, Vol.221, p.118922, Article 118922
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_miscellaneous_3153552078
source Elsevier ScienceDirect Journals
subjects adsorption
carbon
disulfides
electrolytes
energy
Hard carbon
Multifunction Na2Sx heterostructures
Rate capability
Sodium-ion batteries
Ultrahigh reversible capacity
title A facile graft-repair strategy: Subsurface Na2Sx heterostructures in hard carbon anodes for high-capacity and ultrafast sodium-ion storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20facile%20graft-repair%20strategy:%20Subsurface%20Na2Sx%20heterostructures%20in%20hard%20carbon%20anodes%20for%20high-capacity%20and%20ultrafast%20sodium-ion%20storage&rft.jtitle=Carbon%20(New%20York)&rft.au=Huang,%20Yanzhong&rft.date=2024-03&rft.volume=221&rft.spage=118922&rft.pages=118922-&rft.artnum=118922&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2024.118922&rft_dat=%3Cproquest_cross%3E3153552078%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153552078&rft_id=info:pmid/&rft_els_id=S0008622324001416&rfr_iscdi=true