The plastid‐localized lipoamide dehydrogenase 1 is crucial for redox homeostasis, tolerance to arsenic stress and fatty acid biosynthesis in rice
Summary Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood. In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and ars...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2024-06, Vol.242 (6), p.2604-2619 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2619 |
---|---|
container_issue | 6 |
container_start_page | 2604 |
container_title | The New phytologist |
container_volume | 242 |
creator | Chen, Ting‐Ting Zhao, Peng Wang, Yuan Wang, Han‐Qing Tang, Zhu Hu, Han Liu, Yu Xu, Ji‐Ming Mao, Chuan‐Zao Zhao, Fang‐Jie Wu, Zhong‐Chang |
description | Summary
Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood.
In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and arsenite. Through genomic resequencing and complementation tests, we identified OsLPD1 as the causal gene, which encodes a putative lipoamide dehydrogenase.
OsLPD1 was expressed in the outer cell layer of roots, root meristem cells, and in the mesophyll and vascular tissues of leaves. Subcellular localization and immunoblot analysis demonstrated that OsLPD1 is localized in the stroma of plastids. In vitro assays showed that OsLPD1 exhibited lipoamide dehydrogenase (LPD) activity, which was strongly inhibited by arsenite, but not by arsenate. The ahs1 and OsLPD1 knockout mutants exhibited significantly reduced NADH/NAD+ and GSH/GSSG ratios, along with increased levels of reactive oxygen species and greater oxidative stress in the roots compared with wild‐type (WT) plants under As treatment. Additionally, loss‐of‐function of OsLPD1 also resulted in decreased fatty acid concentrations in rice grain.
Taken together, our finding reveals that OsLPD1 plays an important role for maintaining redox homeostasis, conferring tolerance to arsenic stress, and regulating fatty acid biosynthesis in rice. |
doi_str_mv | 10.1111/nph.19727 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153547906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031135005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3467-9f62351ee5d02eef9b37c22ba45be55a4b7779e1ecf3b997265edc82ed1c5b1b3</originalsourceid><addsrcrecordid>eNqF0UFr1jAYB_AginudHvwCEvAyYd2Spknaowx1wlAPE7yVNHlqM9Km5mlx9eRHEPyGfpJF3-lBEHN5cvjlD0_-hDzm7ITnczrNwwlvdKnvkB2vVFPUXOi7ZMdYWReqUh8OyAPEK8ZYI1V5nxyIWiohGr4j3y8HoHMwuHj34-u3EK0J_gs4GvwczegdUAfD5lL8CJNBoJx6pDat1ptA-5hoAhev6RBHiLgY9HhMlxggmclCvlGTECZvKS4JEKmZHO3NsmzUWO9o5yNu0zJAfkj9RJO38JDc601AeHQ7D8n7ly8uz86Li7evXp89vyisqJQuml6VQnIA6VgJ0Ded0LYsO1PJDqQ0Vae1boCD7UXX5O9REpytS3Dcyo534pAc7XPnFD-tgEs7erQQgpkgrtgKLoWsdMPU_ykTnAvJmMz06V_0Kq5pyotkJWtRC1GyrJ7tlU0RMUHfzsmPJm0tZ-3PUttcavur1Gyf3Cau3Qjuj_zdYgane_DZB9j-ndS-eXe-j7wBq7uuzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058383320</pqid></control><display><type>article</type><title>The plastid‐localized lipoamide dehydrogenase 1 is crucial for redox homeostasis, tolerance to arsenic stress and fatty acid biosynthesis in rice</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Ting‐Ting ; Zhao, Peng ; Wang, Yuan ; Wang, Han‐Qing ; Tang, Zhu ; Hu, Han ; Liu, Yu ; Xu, Ji‐Ming ; Mao, Chuan‐Zao ; Zhao, Fang‐Jie ; Wu, Zhong‐Chang</creator><creatorcontrib>Chen, Ting‐Ting ; Zhao, Peng ; Wang, Yuan ; Wang, Han‐Qing ; Tang, Zhu ; Hu, Han ; Liu, Yu ; Xu, Ji‐Ming ; Mao, Chuan‐Zao ; Zhao, Fang‐Jie ; Wu, Zhong‐Chang</creatorcontrib><description>Summary
Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood.
In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and arsenite. Through genomic resequencing and complementation tests, we identified OsLPD1 as the causal gene, which encodes a putative lipoamide dehydrogenase.
OsLPD1 was expressed in the outer cell layer of roots, root meristem cells, and in the mesophyll and vascular tissues of leaves. Subcellular localization and immunoblot analysis demonstrated that OsLPD1 is localized in the stroma of plastids. In vitro assays showed that OsLPD1 exhibited lipoamide dehydrogenase (LPD) activity, which was strongly inhibited by arsenite, but not by arsenate. The ahs1 and OsLPD1 knockout mutants exhibited significantly reduced NADH/NAD+ and GSH/GSSG ratios, along with increased levels of reactive oxygen species and greater oxidative stress in the roots compared with wild‐type (WT) plants under As treatment. Additionally, loss‐of‐function of OsLPD1 also resulted in decreased fatty acid concentrations in rice grain.
Taken together, our finding reveals that OsLPD1 plays an important role for maintaining redox homeostasis, conferring tolerance to arsenic stress, and regulating fatty acid biosynthesis in rice.</description><identifier>ISSN: 0028-646X</identifier><identifier>ISSN: 1469-8137</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.19727</identifier><identifier>PMID: 38563391</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Acidic soils ; Adaptation, Physiological - drug effects ; Adaptation, Physiological - genetics ; Arsenates ; Arsenic ; Arsenic - toxicity ; Arsenite ; arsenites ; Arsenites - toxicity ; Biological stress ; Biosynthesis ; Complementation ; Contamination ; Crop yield ; Dehydrogenase ; Dehydrogenases ; Dihydrolipoamide Dehydrogenase - genetics ; Dihydrolipoamide Dehydrogenase - metabolism ; Fatty acids ; Fatty Acids - biosynthesis ; Gene Expression Regulation, Plant - drug effects ; genes ; Genetics ; genomics ; Homeostasis ; Hypersensitivity ; Localization ; loss-of-function mutation ; LPD1 ; Meristems ; Mesophyll ; Mutants ; Mutation - genetics ; NADH ; Nicotinamide adenine dinucleotide ; Oryza - drug effects ; Oryza - genetics ; Oryza - metabolism ; Oxidation-Reduction - drug effects ; Oxidative stress ; Oxidative Stress - drug effects ; oxidoreductases ; Phytotoxicity ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Roots - drug effects ; Plant Roots - metabolism ; Plant tissues ; Plastids ; Plastids - drug effects ; Plastids - metabolism ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Redox ; Rice ; root meristems ; Roots ; ROS ; Soil contamination ; Soil pollution ; Stress, Physiological - drug effects ; Stress, Physiological - genetics ; Stroma ; Toxicity ; Toxicity tolerance ; Vascular tissue</subject><ispartof>The New phytologist, 2024-06, Vol.242 (6), p.2604-2619</ispartof><rights>2024 The Authors © 2024 New Phytologist Foundation</rights><rights>2024 The Authors New Phytologist © 2024 New Phytologist Foundation.</rights><rights>Copyright © 2024 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3467-9f62351ee5d02eef9b37c22ba45be55a4b7779e1ecf3b997265edc82ed1c5b1b3</cites><orcidid>0000-0001-6383-3817 ; 0000-0001-5126-2180 ; 0000-0002-0164-169X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.19727$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.19727$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38563391$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Ting‐Ting</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Wang, Han‐Qing</creatorcontrib><creatorcontrib>Tang, Zhu</creatorcontrib><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Xu, Ji‐Ming</creatorcontrib><creatorcontrib>Mao, Chuan‐Zao</creatorcontrib><creatorcontrib>Zhao, Fang‐Jie</creatorcontrib><creatorcontrib>Wu, Zhong‐Chang</creatorcontrib><title>The plastid‐localized lipoamide dehydrogenase 1 is crucial for redox homeostasis, tolerance to arsenic stress and fatty acid biosynthesis in rice</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary
Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood.
In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and arsenite. Through genomic resequencing and complementation tests, we identified OsLPD1 as the causal gene, which encodes a putative lipoamide dehydrogenase.
OsLPD1 was expressed in the outer cell layer of roots, root meristem cells, and in the mesophyll and vascular tissues of leaves. Subcellular localization and immunoblot analysis demonstrated that OsLPD1 is localized in the stroma of plastids. In vitro assays showed that OsLPD1 exhibited lipoamide dehydrogenase (LPD) activity, which was strongly inhibited by arsenite, but not by arsenate. The ahs1 and OsLPD1 knockout mutants exhibited significantly reduced NADH/NAD+ and GSH/GSSG ratios, along with increased levels of reactive oxygen species and greater oxidative stress in the roots compared with wild‐type (WT) plants under As treatment. Additionally, loss‐of‐function of OsLPD1 also resulted in decreased fatty acid concentrations in rice grain.
Taken together, our finding reveals that OsLPD1 plays an important role for maintaining redox homeostasis, conferring tolerance to arsenic stress, and regulating fatty acid biosynthesis in rice.</description><subject>Acidic soils</subject><subject>Adaptation, Physiological - drug effects</subject><subject>Adaptation, Physiological - genetics</subject><subject>Arsenates</subject><subject>Arsenic</subject><subject>Arsenic - toxicity</subject><subject>Arsenite</subject><subject>arsenites</subject><subject>Arsenites - toxicity</subject><subject>Biological stress</subject><subject>Biosynthesis</subject><subject>Complementation</subject><subject>Contamination</subject><subject>Crop yield</subject><subject>Dehydrogenase</subject><subject>Dehydrogenases</subject><subject>Dihydrolipoamide Dehydrogenase - genetics</subject><subject>Dihydrolipoamide Dehydrogenase - metabolism</subject><subject>Fatty acids</subject><subject>Fatty Acids - biosynthesis</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>genes</subject><subject>Genetics</subject><subject>genomics</subject><subject>Homeostasis</subject><subject>Hypersensitivity</subject><subject>Localization</subject><subject>loss-of-function mutation</subject><subject>LPD1</subject><subject>Meristems</subject><subject>Mesophyll</subject><subject>Mutants</subject><subject>Mutation - genetics</subject><subject>NADH</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Oryza - drug effects</subject><subject>Oryza - genetics</subject><subject>Oryza - metabolism</subject><subject>Oxidation-Reduction - drug effects</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>oxidoreductases</subject><subject>Phytotoxicity</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Roots - drug effects</subject><subject>Plant Roots - metabolism</subject><subject>Plant tissues</subject><subject>Plastids</subject><subject>Plastids - drug effects</subject><subject>Plastids - metabolism</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Redox</subject><subject>Rice</subject><subject>root meristems</subject><subject>Roots</subject><subject>ROS</subject><subject>Soil contamination</subject><subject>Soil pollution</subject><subject>Stress, Physiological - drug effects</subject><subject>Stress, Physiological - genetics</subject><subject>Stroma</subject><subject>Toxicity</subject><subject>Toxicity tolerance</subject><subject>Vascular tissue</subject><issn>0028-646X</issn><issn>1469-8137</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0UFr1jAYB_AginudHvwCEvAyYd2Spknaowx1wlAPE7yVNHlqM9Km5mlx9eRHEPyGfpJF3-lBEHN5cvjlD0_-hDzm7ITnczrNwwlvdKnvkB2vVFPUXOi7ZMdYWReqUh8OyAPEK8ZYI1V5nxyIWiohGr4j3y8HoHMwuHj34-u3EK0J_gs4GvwczegdUAfD5lL8CJNBoJx6pDat1ptA-5hoAhev6RBHiLgY9HhMlxggmclCvlGTECZvKS4JEKmZHO3NsmzUWO9o5yNu0zJAfkj9RJO38JDc601AeHQ7D8n7ly8uz86Li7evXp89vyisqJQuml6VQnIA6VgJ0Ded0LYsO1PJDqQ0Vae1boCD7UXX5O9REpytS3Dcyo534pAc7XPnFD-tgEs7erQQgpkgrtgKLoWsdMPU_ykTnAvJmMz06V_0Kq5pyotkJWtRC1GyrJ7tlU0RMUHfzsmPJm0tZ-3PUttcavur1Gyf3Cau3Qjuj_zdYgane_DZB9j-ndS-eXe-j7wBq7uuzA</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Chen, Ting‐Ting</creator><creator>Zhao, Peng</creator><creator>Wang, Yuan</creator><creator>Wang, Han‐Qing</creator><creator>Tang, Zhu</creator><creator>Hu, Han</creator><creator>Liu, Yu</creator><creator>Xu, Ji‐Ming</creator><creator>Mao, Chuan‐Zao</creator><creator>Zhao, Fang‐Jie</creator><creator>Wu, Zhong‐Chang</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-6383-3817</orcidid><orcidid>https://orcid.org/0000-0001-5126-2180</orcidid><orcidid>https://orcid.org/0000-0002-0164-169X</orcidid></search><sort><creationdate>202406</creationdate><title>The plastid‐localized lipoamide dehydrogenase 1 is crucial for redox homeostasis, tolerance to arsenic stress and fatty acid biosynthesis in rice</title><author>Chen, Ting‐Ting ; Zhao, Peng ; Wang, Yuan ; Wang, Han‐Qing ; Tang, Zhu ; Hu, Han ; Liu, Yu ; Xu, Ji‐Ming ; Mao, Chuan‐Zao ; Zhao, Fang‐Jie ; Wu, Zhong‐Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3467-9f62351ee5d02eef9b37c22ba45be55a4b7779e1ecf3b997265edc82ed1c5b1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acidic soils</topic><topic>Adaptation, Physiological - drug effects</topic><topic>Adaptation, Physiological - genetics</topic><topic>Arsenates</topic><topic>Arsenic</topic><topic>Arsenic - toxicity</topic><topic>Arsenite</topic><topic>arsenites</topic><topic>Arsenites - toxicity</topic><topic>Biological stress</topic><topic>Biosynthesis</topic><topic>Complementation</topic><topic>Contamination</topic><topic>Crop yield</topic><topic>Dehydrogenase</topic><topic>Dehydrogenases</topic><topic>Dihydrolipoamide Dehydrogenase - genetics</topic><topic>Dihydrolipoamide Dehydrogenase - metabolism</topic><topic>Fatty acids</topic><topic>Fatty Acids - biosynthesis</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>genes</topic><topic>Genetics</topic><topic>genomics</topic><topic>Homeostasis</topic><topic>Hypersensitivity</topic><topic>Localization</topic><topic>loss-of-function mutation</topic><topic>LPD1</topic><topic>Meristems</topic><topic>Mesophyll</topic><topic>Mutants</topic><topic>Mutation - genetics</topic><topic>NADH</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Oryza - drug effects</topic><topic>Oryza - genetics</topic><topic>Oryza - metabolism</topic><topic>Oxidation-Reduction - drug effects</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>oxidoreductases</topic><topic>Phytotoxicity</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Roots - drug effects</topic><topic>Plant Roots - metabolism</topic><topic>Plant tissues</topic><topic>Plastids</topic><topic>Plastids - drug effects</topic><topic>Plastids - metabolism</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Redox</topic><topic>Rice</topic><topic>root meristems</topic><topic>Roots</topic><topic>ROS</topic><topic>Soil contamination</topic><topic>Soil pollution</topic><topic>Stress, Physiological - drug effects</topic><topic>Stress, Physiological - genetics</topic><topic>Stroma</topic><topic>Toxicity</topic><topic>Toxicity tolerance</topic><topic>Vascular tissue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ting‐Ting</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Wang, Han‐Qing</creatorcontrib><creatorcontrib>Tang, Zhu</creatorcontrib><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Xu, Ji‐Ming</creatorcontrib><creatorcontrib>Mao, Chuan‐Zao</creatorcontrib><creatorcontrib>Zhao, Fang‐Jie</creatorcontrib><creatorcontrib>Wu, Zhong‐Chang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ting‐Ting</au><au>Zhao, Peng</au><au>Wang, Yuan</au><au>Wang, Han‐Qing</au><au>Tang, Zhu</au><au>Hu, Han</au><au>Liu, Yu</au><au>Xu, Ji‐Ming</au><au>Mao, Chuan‐Zao</au><au>Zhao, Fang‐Jie</au><au>Wu, Zhong‐Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The plastid‐localized lipoamide dehydrogenase 1 is crucial for redox homeostasis, tolerance to arsenic stress and fatty acid biosynthesis in rice</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2024-06</date><risdate>2024</risdate><volume>242</volume><issue>6</issue><spage>2604</spage><epage>2619</epage><pages>2604-2619</pages><issn>0028-646X</issn><issn>1469-8137</issn><eissn>1469-8137</eissn><abstract>Summary
Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood.
In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and arsenite. Through genomic resequencing and complementation tests, we identified OsLPD1 as the causal gene, which encodes a putative lipoamide dehydrogenase.
OsLPD1 was expressed in the outer cell layer of roots, root meristem cells, and in the mesophyll and vascular tissues of leaves. Subcellular localization and immunoblot analysis demonstrated that OsLPD1 is localized in the stroma of plastids. In vitro assays showed that OsLPD1 exhibited lipoamide dehydrogenase (LPD) activity, which was strongly inhibited by arsenite, but not by arsenate. The ahs1 and OsLPD1 knockout mutants exhibited significantly reduced NADH/NAD+ and GSH/GSSG ratios, along with increased levels of reactive oxygen species and greater oxidative stress in the roots compared with wild‐type (WT) plants under As treatment. Additionally, loss‐of‐function of OsLPD1 also resulted in decreased fatty acid concentrations in rice grain.
Taken together, our finding reveals that OsLPD1 plays an important role for maintaining redox homeostasis, conferring tolerance to arsenic stress, and regulating fatty acid biosynthesis in rice.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38563391</pmid><doi>10.1111/nph.19727</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6383-3817</orcidid><orcidid>https://orcid.org/0000-0001-5126-2180</orcidid><orcidid>https://orcid.org/0000-0002-0164-169X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2024-06, Vol.242 (6), p.2604-2619 |
issn | 0028-646X 1469-8137 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153547906 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Acidic soils Adaptation, Physiological - drug effects Adaptation, Physiological - genetics Arsenates Arsenic Arsenic - toxicity Arsenite arsenites Arsenites - toxicity Biological stress Biosynthesis Complementation Contamination Crop yield Dehydrogenase Dehydrogenases Dihydrolipoamide Dehydrogenase - genetics Dihydrolipoamide Dehydrogenase - metabolism Fatty acids Fatty Acids - biosynthesis Gene Expression Regulation, Plant - drug effects genes Genetics genomics Homeostasis Hypersensitivity Localization loss-of-function mutation LPD1 Meristems Mesophyll Mutants Mutation - genetics NADH Nicotinamide adenine dinucleotide Oryza - drug effects Oryza - genetics Oryza - metabolism Oxidation-Reduction - drug effects Oxidative stress Oxidative Stress - drug effects oxidoreductases Phytotoxicity Plant Proteins - genetics Plant Proteins - metabolism Plant Roots - drug effects Plant Roots - metabolism Plant tissues Plastids Plastids - drug effects Plastids - metabolism Reactive oxygen species Reactive Oxygen Species - metabolism Redox Rice root meristems Roots ROS Soil contamination Soil pollution Stress, Physiological - drug effects Stress, Physiological - genetics Stroma Toxicity Toxicity tolerance Vascular tissue |
title | The plastid‐localized lipoamide dehydrogenase 1 is crucial for redox homeostasis, tolerance to arsenic stress and fatty acid biosynthesis in rice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A56%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20plastid%E2%80%90localized%20lipoamide%20dehydrogenase%201%20is%20crucial%20for%20redox%20homeostasis,%20tolerance%20to%20arsenic%20stress%20and%20fatty%20acid%20biosynthesis%20in%20rice&rft.jtitle=The%20New%20phytologist&rft.au=Chen,%20Ting%E2%80%90Ting&rft.date=2024-06&rft.volume=242&rft.issue=6&rft.spage=2604&rft.epage=2619&rft.pages=2604-2619&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.19727&rft_dat=%3Cproquest_cross%3E3031135005%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3058383320&rft_id=info:pmid/38563391&rfr_iscdi=true |