Diverse skill of seasonal dynamical models in forecasting South Asian monsoon precipitation and the influence of ENSO and IOD

The South Asia Seasonal Climate Outlook Forum (SASCOF) issues seasonal tercile precipitation forecasts to provide advance warning of anomalously dry or wet monsoon seasons in South Asia. To increase objectivity of the SASCOF seasonal outlook, the World Meteorological Organisation recommends using a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2023-10, Vol.61 (7-8), p.3857-3874
Hauptverfasser: Stacey, J., Salmon, K., Janes, T., Colman, A., Colledge, F., Bett, P. E., Srinivasan, G., Pai, D. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3874
container_issue 7-8
container_start_page 3857
container_title Climate dynamics
container_volume 61
creator Stacey, J.
Salmon, K.
Janes, T.
Colman, A.
Colledge, F.
Bett, P. E.
Srinivasan, G.
Pai, D. S.
description The South Asia Seasonal Climate Outlook Forum (SASCOF) issues seasonal tercile precipitation forecasts to provide advance warning of anomalously dry or wet monsoon seasons in South Asia. To increase objectivity of the SASCOF seasonal outlook, the World Meteorological Organisation recommends using a multi-model ensemble combining the most skilful dynamical seasonal models for the region. We assess the skill of 12 dynamical models at forecasting seasonal precipitation totals for 1993–2016 for the southwest (June–July–August–September) and northeast (October–November–December) monsoon seasons at regional and national levels for Afghanistan, Bangladesh, Nepal, and Pakistan, using identical forecast periods, hindcast initialisation months and domain used at the SASCOF. All models demonstrate positive skill when regionally-averaged, especially for the southwest monsoon season, noting considerable spatial differences. Models exhibit highest skill where correlation between observed precipitation and El Niño Southern Oscillation (ENSO) is highest, e.g., central/north India and Nepal during the southwest monsoon, and Afghanistan and north Pakistan during the northeast monsoon. Model skill is especially low in northwest India and northeast of South Asia during the southwest monsoon, e.g., Bangladesh (despite high precipitation totals) coinciding with a weak ENSO teleconnection. The Indian Ocean Dipole teleconnection is less pronounced in the southwest monsoon season, whereas the spatial pattern for the northeast monsoon closely resembles that of ENSO. Due to high variability in model skill, we recommend basing the SASCOF forecast on a multi-model ensemble of all models but discounting poorly performing models at the national level.
doi_str_mv 10.1007/s00382-023-06770-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153203249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762013306</galeid><sourcerecordid>A762013306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-d7694978efcfe8fd061396b0e1bcae7bd2bb46c70b720e95a97c6d383d0d946d3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEEkvhD3CKhITgkHZiJ3ZyXLUFVqq6Egtny3Emuy5ee8k4FT3w3_E2SLAckA-ej-cdaUZvlr0u4bwEkBcEwBtWAOMFCCmhYE-yRVnxVGra6mm2gJZDIWtZP89eEN0BlJWQbJH9vLL3OBLm9M06l4chJ9QUvHZ5_-D13poU7UOPjnLr8yGMaDRF67f5Jkxxly_Jap8ITyH4_JDa9mCjjjZl2vd53GESDm5Cb_A4__p2s37srNZXL7Nng3aEr37_Z9nXD9dfLj8VN-uPq8vlTWFqgFj0UrRVKxsczIDN0IMoeSs6wLIzGmXXs66rhJHQSQbY1rqVRvS84T30bZWis-zdPPcwhu8TUlR7Swad0x7DRIqXNWfAWdUm9M0_6F2YxnQPUqypRVmDaEWizmdqqx2qtF-Iozbp9ZhOFjwONtWXUjAoOYej4P2JIDERf8StnojUavP5lH37F7tD7eKOgpuON6VTkM2gGQPRiIM6jHavxwdVgjr6Qs2-UMkX6tEXiiURn0WUYL_F8c-C_1H9AhA-uWo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856150696</pqid></control><display><type>article</type><title>Diverse skill of seasonal dynamical models in forecasting South Asian monsoon precipitation and the influence of ENSO and IOD</title><source>Springer Nature - Complete Springer Journals</source><creator>Stacey, J. ; Salmon, K. ; Janes, T. ; Colman, A. ; Colledge, F. ; Bett, P. E. ; Srinivasan, G. ; Pai, D. S.</creator><creatorcontrib>Stacey, J. ; Salmon, K. ; Janes, T. ; Colman, A. ; Colledge, F. ; Bett, P. E. ; Srinivasan, G. ; Pai, D. S.</creatorcontrib><description>The South Asia Seasonal Climate Outlook Forum (SASCOF) issues seasonal tercile precipitation forecasts to provide advance warning of anomalously dry or wet monsoon seasons in South Asia. To increase objectivity of the SASCOF seasonal outlook, the World Meteorological Organisation recommends using a multi-model ensemble combining the most skilful dynamical seasonal models for the region. We assess the skill of 12 dynamical models at forecasting seasonal precipitation totals for 1993–2016 for the southwest (June–July–August–September) and northeast (October–November–December) monsoon seasons at regional and national levels for Afghanistan, Bangladesh, Nepal, and Pakistan, using identical forecast periods, hindcast initialisation months and domain used at the SASCOF. All models demonstrate positive skill when regionally-averaged, especially for the southwest monsoon season, noting considerable spatial differences. Models exhibit highest skill where correlation between observed precipitation and El Niño Southern Oscillation (ENSO) is highest, e.g., central/north India and Nepal during the southwest monsoon, and Afghanistan and north Pakistan during the northeast monsoon. Model skill is especially low in northwest India and northeast of South Asia during the southwest monsoon, e.g., Bangladesh (despite high precipitation totals) coinciding with a weak ENSO teleconnection. The Indian Ocean Dipole teleconnection is less pronounced in the southwest monsoon season, whereas the spatial pattern for the northeast monsoon closely resembles that of ENSO. Due to high variability in model skill, we recommend basing the SASCOF forecast on a multi-model ensemble of all models but discounting poorly performing models at the national level.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-023-06770-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Afghanistan ; Bangladesh ; climate ; Climate models ; Climatology ; Dipoles ; Dynamic models ; Earth and Environmental Science ; Earth Sciences ; El Nino ; El Nino phenomena ; El Nino-Southern Oscillation event ; Ensemble forecasting ; Environmental aspects ; Geophysics/Geodesy ; India ; Indian Ocean ; Methods ; Modelling ; Monsoon forecasting ; Monsoon precipitation ; monsoon season ; Monsoons ; Nepal ; Oceanography ; Pakistan ; Precipitation ; Precipitation (Meteorology) ; Precipitation forecasting ; Seasonal precipitation ; Seasons ; South Asian monsoon ; Southern Oscillation ; Southwest monsoon ; Spatial variations ; Teleconnections ; Weather forecasting ; Wind</subject><ispartof>Climate dynamics, 2023-10, Vol.61 (7-8), p.3857-3874</ispartof><rights>Crown 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Crown 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-d7694978efcfe8fd061396b0e1bcae7bd2bb46c70b720e95a97c6d383d0d946d3</citedby><cites>FETCH-LOGICAL-c500t-d7694978efcfe8fd061396b0e1bcae7bd2bb46c70b720e95a97c6d383d0d946d3</cites><orcidid>0000-0002-4452-491X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-023-06770-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-023-06770-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Stacey, J.</creatorcontrib><creatorcontrib>Salmon, K.</creatorcontrib><creatorcontrib>Janes, T.</creatorcontrib><creatorcontrib>Colman, A.</creatorcontrib><creatorcontrib>Colledge, F.</creatorcontrib><creatorcontrib>Bett, P. E.</creatorcontrib><creatorcontrib>Srinivasan, G.</creatorcontrib><creatorcontrib>Pai, D. S.</creatorcontrib><title>Diverse skill of seasonal dynamical models in forecasting South Asian monsoon precipitation and the influence of ENSO and IOD</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>The South Asia Seasonal Climate Outlook Forum (SASCOF) issues seasonal tercile precipitation forecasts to provide advance warning of anomalously dry or wet monsoon seasons in South Asia. To increase objectivity of the SASCOF seasonal outlook, the World Meteorological Organisation recommends using a multi-model ensemble combining the most skilful dynamical seasonal models for the region. We assess the skill of 12 dynamical models at forecasting seasonal precipitation totals for 1993–2016 for the southwest (June–July–August–September) and northeast (October–November–December) monsoon seasons at regional and national levels for Afghanistan, Bangladesh, Nepal, and Pakistan, using identical forecast periods, hindcast initialisation months and domain used at the SASCOF. All models demonstrate positive skill when regionally-averaged, especially for the southwest monsoon season, noting considerable spatial differences. Models exhibit highest skill where correlation between observed precipitation and El Niño Southern Oscillation (ENSO) is highest, e.g., central/north India and Nepal during the southwest monsoon, and Afghanistan and north Pakistan during the northeast monsoon. Model skill is especially low in northwest India and northeast of South Asia during the southwest monsoon, e.g., Bangladesh (despite high precipitation totals) coinciding with a weak ENSO teleconnection. The Indian Ocean Dipole teleconnection is less pronounced in the southwest monsoon season, whereas the spatial pattern for the northeast monsoon closely resembles that of ENSO. Due to high variability in model skill, we recommend basing the SASCOF forecast on a multi-model ensemble of all models but discounting poorly performing models at the national level.</description><subject>Afghanistan</subject><subject>Bangladesh</subject><subject>climate</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Dipoles</subject><subject>Dynamic models</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>El Nino-Southern Oscillation event</subject><subject>Ensemble forecasting</subject><subject>Environmental aspects</subject><subject>Geophysics/Geodesy</subject><subject>India</subject><subject>Indian Ocean</subject><subject>Methods</subject><subject>Modelling</subject><subject>Monsoon forecasting</subject><subject>Monsoon precipitation</subject><subject>monsoon season</subject><subject>Monsoons</subject><subject>Nepal</subject><subject>Oceanography</subject><subject>Pakistan</subject><subject>Precipitation</subject><subject>Precipitation (Meteorology)</subject><subject>Precipitation forecasting</subject><subject>Seasonal precipitation</subject><subject>Seasons</subject><subject>South Asian monsoon</subject><subject>Southern Oscillation</subject><subject>Southwest monsoon</subject><subject>Spatial variations</subject><subject>Teleconnections</subject><subject>Weather forecasting</subject><subject>Wind</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kk1v1DAQhiMEEkvhD3CKhITgkHZiJ3ZyXLUFVqq6Egtny3Emuy5ee8k4FT3w3_E2SLAckA-ej-cdaUZvlr0u4bwEkBcEwBtWAOMFCCmhYE-yRVnxVGra6mm2gJZDIWtZP89eEN0BlJWQbJH9vLL3OBLm9M06l4chJ9QUvHZ5_-D13poU7UOPjnLr8yGMaDRF67f5Jkxxly_Jap8ITyH4_JDa9mCjjjZl2vd53GESDm5Cb_A4__p2s37srNZXL7Nng3aEr37_Z9nXD9dfLj8VN-uPq8vlTWFqgFj0UrRVKxsczIDN0IMoeSs6wLIzGmXXs66rhJHQSQbY1rqVRvS84T30bZWis-zdPPcwhu8TUlR7Swad0x7DRIqXNWfAWdUm9M0_6F2YxnQPUqypRVmDaEWizmdqqx2qtF-Iozbp9ZhOFjwONtWXUjAoOYej4P2JIDERf8StnojUavP5lH37F7tD7eKOgpuON6VTkM2gGQPRiIM6jHavxwdVgjr6Qs2-UMkX6tEXiiURn0WUYL_F8c-C_1H9AhA-uWo</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Stacey, J.</creator><creator>Salmon, K.</creator><creator>Janes, T.</creator><creator>Colman, A.</creator><creator>Colledge, F.</creator><creator>Bett, P. E.</creator><creator>Srinivasan, G.</creator><creator>Pai, D. S.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-4452-491X</orcidid></search><sort><creationdate>20231001</creationdate><title>Diverse skill of seasonal dynamical models in forecasting South Asian monsoon precipitation and the influence of ENSO and IOD</title><author>Stacey, J. ; Salmon, K. ; Janes, T. ; Colman, A. ; Colledge, F. ; Bett, P. E. ; Srinivasan, G. ; Pai, D. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-d7694978efcfe8fd061396b0e1bcae7bd2bb46c70b720e95a97c6d383d0d946d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Afghanistan</topic><topic>Bangladesh</topic><topic>climate</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Dipoles</topic><topic>Dynamic models</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>El Nino-Southern Oscillation event</topic><topic>Ensemble forecasting</topic><topic>Environmental aspects</topic><topic>Geophysics/Geodesy</topic><topic>India</topic><topic>Indian Ocean</topic><topic>Methods</topic><topic>Modelling</topic><topic>Monsoon forecasting</topic><topic>Monsoon precipitation</topic><topic>monsoon season</topic><topic>Monsoons</topic><topic>Nepal</topic><topic>Oceanography</topic><topic>Pakistan</topic><topic>Precipitation</topic><topic>Precipitation (Meteorology)</topic><topic>Precipitation forecasting</topic><topic>Seasonal precipitation</topic><topic>Seasons</topic><topic>South Asian monsoon</topic><topic>Southern Oscillation</topic><topic>Southwest monsoon</topic><topic>Spatial variations</topic><topic>Teleconnections</topic><topic>Weather forecasting</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stacey, J.</creatorcontrib><creatorcontrib>Salmon, K.</creatorcontrib><creatorcontrib>Janes, T.</creatorcontrib><creatorcontrib>Colman, A.</creatorcontrib><creatorcontrib>Colledge, F.</creatorcontrib><creatorcontrib>Bett, P. E.</creatorcontrib><creatorcontrib>Srinivasan, G.</creatorcontrib><creatorcontrib>Pai, D. S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stacey, J.</au><au>Salmon, K.</au><au>Janes, T.</au><au>Colman, A.</au><au>Colledge, F.</au><au>Bett, P. E.</au><au>Srinivasan, G.</au><au>Pai, D. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diverse skill of seasonal dynamical models in forecasting South Asian monsoon precipitation and the influence of ENSO and IOD</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>61</volume><issue>7-8</issue><spage>3857</spage><epage>3874</epage><pages>3857-3874</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>The South Asia Seasonal Climate Outlook Forum (SASCOF) issues seasonal tercile precipitation forecasts to provide advance warning of anomalously dry or wet monsoon seasons in South Asia. To increase objectivity of the SASCOF seasonal outlook, the World Meteorological Organisation recommends using a multi-model ensemble combining the most skilful dynamical seasonal models for the region. We assess the skill of 12 dynamical models at forecasting seasonal precipitation totals for 1993–2016 for the southwest (June–July–August–September) and northeast (October–November–December) monsoon seasons at regional and national levels for Afghanistan, Bangladesh, Nepal, and Pakistan, using identical forecast periods, hindcast initialisation months and domain used at the SASCOF. All models demonstrate positive skill when regionally-averaged, especially for the southwest monsoon season, noting considerable spatial differences. Models exhibit highest skill where correlation between observed precipitation and El Niño Southern Oscillation (ENSO) is highest, e.g., central/north India and Nepal during the southwest monsoon, and Afghanistan and north Pakistan during the northeast monsoon. Model skill is especially low in northwest India and northeast of South Asia during the southwest monsoon, e.g., Bangladesh (despite high precipitation totals) coinciding with a weak ENSO teleconnection. The Indian Ocean Dipole teleconnection is less pronounced in the southwest monsoon season, whereas the spatial pattern for the northeast monsoon closely resembles that of ENSO. Due to high variability in model skill, we recommend basing the SASCOF forecast on a multi-model ensemble of all models but discounting poorly performing models at the national level.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-023-06770-2</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4452-491X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2023-10, Vol.61 (7-8), p.3857-3874
issn 0930-7575
1432-0894
language eng
recordid cdi_proquest_miscellaneous_3153203249
source Springer Nature - Complete Springer Journals
subjects Afghanistan
Bangladesh
climate
Climate models
Climatology
Dipoles
Dynamic models
Earth and Environmental Science
Earth Sciences
El Nino
El Nino phenomena
El Nino-Southern Oscillation event
Ensemble forecasting
Environmental aspects
Geophysics/Geodesy
India
Indian Ocean
Methods
Modelling
Monsoon forecasting
Monsoon precipitation
monsoon season
Monsoons
Nepal
Oceanography
Pakistan
Precipitation
Precipitation (Meteorology)
Precipitation forecasting
Seasonal precipitation
Seasons
South Asian monsoon
Southern Oscillation
Southwest monsoon
Spatial variations
Teleconnections
Weather forecasting
Wind
title Diverse skill of seasonal dynamical models in forecasting South Asian monsoon precipitation and the influence of ENSO and IOD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A54%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diverse%20skill%20of%20seasonal%20dynamical%20models%20in%20forecasting%20South%20Asian%20monsoon%20precipitation%20and%20the%20influence%20of%20ENSO%20and%20IOD&rft.jtitle=Climate%20dynamics&rft.au=Stacey,%20J.&rft.date=2023-10-01&rft.volume=61&rft.issue=7-8&rft.spage=3857&rft.epage=3874&rft.pages=3857-3874&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-023-06770-2&rft_dat=%3Cgale_proqu%3EA762013306%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2856150696&rft_id=info:pmid/&rft_galeid=A762013306&rfr_iscdi=true