Mechanisms of persimmon pectin methyl esterase activation by high pressure processing based on chemical experiments and molecular dynamics simulations

•Persimmon pectin methyl esterase (PME) (38 kDa) was purified with 81.89% purity.•High pressure processing (HPP) with 500 MPa/5 min could increase PME activity by 11.3%.•Chemical experiments found that HPP changed the secondary structure and volume of PME.•Molecular simulations revealed altered PME...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food chemistry 2024-01, Vol.432, p.137239-137239, Article 137239
Hauptverfasser: Zhang, Xinyue, Xu, Jiayue, Tian, Xuezhi, Wang, Yongtao, Liao, Xiaojun, Zhao, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 137239
container_issue
container_start_page 137239
container_title Food chemistry
container_volume 432
creator Zhang, Xinyue
Xu, Jiayue
Tian, Xuezhi
Wang, Yongtao
Liao, Xiaojun
Zhao, Liang
description •Persimmon pectin methyl esterase (PME) (38 kDa) was purified with 81.89% purity.•High pressure processing (HPP) with 500 MPa/5 min could increase PME activity by 11.3%.•Chemical experiments found that HPP changed the secondary structure and volume of PME.•Molecular simulations revealed altered PME active centers under high pressure. High pressure processing (HPP) was found to have a kinase effect on persimmon pectin methyl esterase (PME), while the mechanism remains unclear. In this study, chemical experiments and molecular dynamics (MD) simulations were used to reveal its mechanisms. Persimmon PME was first extracted and purified using ion exchange columns with 81.89% purity. After 500 MPa/5 min, PME activity increased 11.3%, the α-helix and β-folding decreased 10.8% and 6.1% compared to the 0.1 MPa group, respectively. MD results showed that HPP decreased the volume, increased the number of hydrogen bonds between PME and pectin. Under high pressure, Asp-157, Asp-136 and Gln-135 in the enzyme activity center remained stable, while the positions of Arg-225 and Gln-113 changed a lot. The conformation of the substrate binding channel also changed. The secondary structure and volume changes of the HPP-treated PME affected the active center and substrate channels, ultimately altering the activity.
doi_str_mv 10.1016/j.foodchem.2023.137239
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153195332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0308814623018575</els_id><sourcerecordid>2863306232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-d800d5dfc6ad667dbb5f40a7c7d632783709bc0fa4510a0233e05b834d5166803</originalsourceid><addsrcrecordid>eNqFkc-OFCEQxonRxHH1FQxHLz0WMA3MTbPxX7LGi54JDdXbTLphhJ6N8yI-rzWOnvdEpfKrj_rqY-y1gK0Aod8etmMpMUy4bCVItRXKSLV_wjbCGtUZMPIp24AC21mx08_Zi9YOACBB2A37_RXD5HNqS-Nl5EesLS1LyVSFNWW-4DqdZ45txeobck_dB78mIoYzn9L9xI8VWztVpKIEKlO-5wOxkRN0WSsFTwq_SDstmNfGfY58KTOG0-wrj-fsiWmcfqbGRbu9ZM9GPzd89e-9YT8-fvh--7m7-_bpy-37uy4oY9cuWoDYxzFoH7U2cRj6cQfeBBO1ksYqA_shwOh3vQBPx1EI_WDVLvZCawvqhr256tLuP0_k0i2pBZxnn7GcmlOiV2LfKyUfRaXVSoGWf1F9RUMtrVUc3ZGs-3p2AtwlM3dw_zNzl8zcNTMafHcdRPL8kLC6FhLmgDFVysPFkh6T-AORDabv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2863306232</pqid></control><display><type>article</type><title>Mechanisms of persimmon pectin methyl esterase activation by high pressure processing based on chemical experiments and molecular dynamics simulations</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhang, Xinyue ; Xu, Jiayue ; Tian, Xuezhi ; Wang, Yongtao ; Liao, Xiaojun ; Zhao, Liang</creator><creatorcontrib>Zhang, Xinyue ; Xu, Jiayue ; Tian, Xuezhi ; Wang, Yongtao ; Liao, Xiaojun ; Zhao, Liang</creatorcontrib><description>•Persimmon pectin methyl esterase (PME) (38 kDa) was purified with 81.89% purity.•High pressure processing (HPP) with 500 MPa/5 min could increase PME activity by 11.3%.•Chemical experiments found that HPP changed the secondary structure and volume of PME.•Molecular simulations revealed altered PME active centers under high pressure. High pressure processing (HPP) was found to have a kinase effect on persimmon pectin methyl esterase (PME), while the mechanism remains unclear. In this study, chemical experiments and molecular dynamics (MD) simulations were used to reveal its mechanisms. Persimmon PME was first extracted and purified using ion exchange columns with 81.89% purity. After 500 MPa/5 min, PME activity increased 11.3%, the α-helix and β-folding decreased 10.8% and 6.1% compared to the 0.1 MPa group, respectively. MD results showed that HPP decreased the volume, increased the number of hydrogen bonds between PME and pectin. Under high pressure, Asp-157, Asp-136 and Gln-135 in the enzyme activity center remained stable, while the positions of Arg-225 and Gln-113 changed a lot. The conformation of the substrate binding channel also changed. The secondary structure and volume changes of the HPP-treated PME affected the active center and substrate channels, ultimately altering the activity.</description><identifier>ISSN: 0308-8146</identifier><identifier>EISSN: 1873-7072</identifier><identifier>DOI: 10.1016/j.foodchem.2023.137239</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Activation ; enzyme activity ; food chemistry ; High pressure processing ; hydrogen ; ion exchange ; molecular dynamics ; Molecular dynamics simulations ; Pectin methyl esterase ; pectinesterase ; pectins ; Persimmon ; persimmons</subject><ispartof>Food chemistry, 2024-01, Vol.432, p.137239-137239, Article 137239</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-d800d5dfc6ad667dbb5f40a7c7d632783709bc0fa4510a0233e05b834d5166803</citedby><cites>FETCH-LOGICAL-c378t-d800d5dfc6ad667dbb5f40a7c7d632783709bc0fa4510a0233e05b834d5166803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0308814623018575$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhang, Xinyue</creatorcontrib><creatorcontrib>Xu, Jiayue</creatorcontrib><creatorcontrib>Tian, Xuezhi</creatorcontrib><creatorcontrib>Wang, Yongtao</creatorcontrib><creatorcontrib>Liao, Xiaojun</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><title>Mechanisms of persimmon pectin methyl esterase activation by high pressure processing based on chemical experiments and molecular dynamics simulations</title><title>Food chemistry</title><description>•Persimmon pectin methyl esterase (PME) (38 kDa) was purified with 81.89% purity.•High pressure processing (HPP) with 500 MPa/5 min could increase PME activity by 11.3%.•Chemical experiments found that HPP changed the secondary structure and volume of PME.•Molecular simulations revealed altered PME active centers under high pressure. High pressure processing (HPP) was found to have a kinase effect on persimmon pectin methyl esterase (PME), while the mechanism remains unclear. In this study, chemical experiments and molecular dynamics (MD) simulations were used to reveal its mechanisms. Persimmon PME was first extracted and purified using ion exchange columns with 81.89% purity. After 500 MPa/5 min, PME activity increased 11.3%, the α-helix and β-folding decreased 10.8% and 6.1% compared to the 0.1 MPa group, respectively. MD results showed that HPP decreased the volume, increased the number of hydrogen bonds between PME and pectin. Under high pressure, Asp-157, Asp-136 and Gln-135 in the enzyme activity center remained stable, while the positions of Arg-225 and Gln-113 changed a lot. The conformation of the substrate binding channel also changed. The secondary structure and volume changes of the HPP-treated PME affected the active center and substrate channels, ultimately altering the activity.</description><subject>Activation</subject><subject>enzyme activity</subject><subject>food chemistry</subject><subject>High pressure processing</subject><subject>hydrogen</subject><subject>ion exchange</subject><subject>molecular dynamics</subject><subject>Molecular dynamics simulations</subject><subject>Pectin methyl esterase</subject><subject>pectinesterase</subject><subject>pectins</subject><subject>Persimmon</subject><subject>persimmons</subject><issn>0308-8146</issn><issn>1873-7072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc-OFCEQxonRxHH1FQxHLz0WMA3MTbPxX7LGi54JDdXbTLphhJ6N8yI-rzWOnvdEpfKrj_rqY-y1gK0Aod8etmMpMUy4bCVItRXKSLV_wjbCGtUZMPIp24AC21mx08_Zi9YOACBB2A37_RXD5HNqS-Nl5EesLS1LyVSFNWW-4DqdZ45txeobck_dB78mIoYzn9L9xI8VWztVpKIEKlO-5wOxkRN0WSsFTwq_SDstmNfGfY58KTOG0-wrj-fsiWmcfqbGRbu9ZM9GPzd89e-9YT8-fvh--7m7-_bpy-37uy4oY9cuWoDYxzFoH7U2cRj6cQfeBBO1ksYqA_shwOh3vQBPx1EI_WDVLvZCawvqhr256tLuP0_k0i2pBZxnn7GcmlOiV2LfKyUfRaXVSoGWf1F9RUMtrVUc3ZGs-3p2AtwlM3dw_zNzl8zcNTMafHcdRPL8kLC6FhLmgDFVysPFkh6T-AORDabv</recordid><startdate>20240130</startdate><enddate>20240130</enddate><creator>Zhang, Xinyue</creator><creator>Xu, Jiayue</creator><creator>Tian, Xuezhi</creator><creator>Wang, Yongtao</creator><creator>Liao, Xiaojun</creator><creator>Zhao, Liang</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240130</creationdate><title>Mechanisms of persimmon pectin methyl esterase activation by high pressure processing based on chemical experiments and molecular dynamics simulations</title><author>Zhang, Xinyue ; Xu, Jiayue ; Tian, Xuezhi ; Wang, Yongtao ; Liao, Xiaojun ; Zhao, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-d800d5dfc6ad667dbb5f40a7c7d632783709bc0fa4510a0233e05b834d5166803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activation</topic><topic>enzyme activity</topic><topic>food chemistry</topic><topic>High pressure processing</topic><topic>hydrogen</topic><topic>ion exchange</topic><topic>molecular dynamics</topic><topic>Molecular dynamics simulations</topic><topic>Pectin methyl esterase</topic><topic>pectinesterase</topic><topic>pectins</topic><topic>Persimmon</topic><topic>persimmons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xinyue</creatorcontrib><creatorcontrib>Xu, Jiayue</creatorcontrib><creatorcontrib>Tian, Xuezhi</creatorcontrib><creatorcontrib>Wang, Yongtao</creatorcontrib><creatorcontrib>Liao, Xiaojun</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xinyue</au><au>Xu, Jiayue</au><au>Tian, Xuezhi</au><au>Wang, Yongtao</au><au>Liao, Xiaojun</au><au>Zhao, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of persimmon pectin methyl esterase activation by high pressure processing based on chemical experiments and molecular dynamics simulations</atitle><jtitle>Food chemistry</jtitle><date>2024-01-30</date><risdate>2024</risdate><volume>432</volume><spage>137239</spage><epage>137239</epage><pages>137239-137239</pages><artnum>137239</artnum><issn>0308-8146</issn><eissn>1873-7072</eissn><abstract>•Persimmon pectin methyl esterase (PME) (38 kDa) was purified with 81.89% purity.•High pressure processing (HPP) with 500 MPa/5 min could increase PME activity by 11.3%.•Chemical experiments found that HPP changed the secondary structure and volume of PME.•Molecular simulations revealed altered PME active centers under high pressure. High pressure processing (HPP) was found to have a kinase effect on persimmon pectin methyl esterase (PME), while the mechanism remains unclear. In this study, chemical experiments and molecular dynamics (MD) simulations were used to reveal its mechanisms. Persimmon PME was first extracted and purified using ion exchange columns with 81.89% purity. After 500 MPa/5 min, PME activity increased 11.3%, the α-helix and β-folding decreased 10.8% and 6.1% compared to the 0.1 MPa group, respectively. MD results showed that HPP decreased the volume, increased the number of hydrogen bonds between PME and pectin. Under high pressure, Asp-157, Asp-136 and Gln-135 in the enzyme activity center remained stable, while the positions of Arg-225 and Gln-113 changed a lot. The conformation of the substrate binding channel also changed. The secondary structure and volume changes of the HPP-treated PME affected the active center and substrate channels, ultimately altering the activity.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.foodchem.2023.137239</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0308-8146
ispartof Food chemistry, 2024-01, Vol.432, p.137239-137239, Article 137239
issn 0308-8146
1873-7072
language eng
recordid cdi_proquest_miscellaneous_3153195332
source Elsevier ScienceDirect Journals Complete
subjects Activation
enzyme activity
food chemistry
High pressure processing
hydrogen
ion exchange
molecular dynamics
Molecular dynamics simulations
Pectin methyl esterase
pectinesterase
pectins
Persimmon
persimmons
title Mechanisms of persimmon pectin methyl esterase activation by high pressure processing based on chemical experiments and molecular dynamics simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20persimmon%20pectin%20methyl%20esterase%20activation%20by%20high%20pressure%20processing%20based%20on%20chemical%20experiments%20and%20molecular%20dynamics%20simulations&rft.jtitle=Food%20chemistry&rft.au=Zhang,%20Xinyue&rft.date=2024-01-30&rft.volume=432&rft.spage=137239&rft.epage=137239&rft.pages=137239-137239&rft.artnum=137239&rft.issn=0308-8146&rft.eissn=1873-7072&rft_id=info:doi/10.1016/j.foodchem.2023.137239&rft_dat=%3Cproquest_cross%3E2863306232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2863306232&rft_id=info:pmid/&rft_els_id=S0308814623018575&rfr_iscdi=true