Development of non-destructive system for estimating avocado quality parameters

México has established itself as a significant global exporter of avocados, owing to the surging demand for this highly sought-after fruit. In response to market requirements, the assurance of specific quality parameters during the harvesting and international transportation phases has become indisp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Postharvest biology and technology 2024-06, Vol.212, p.112886, Article 112886
Hauptverfasser: Becerra-Sanchez, Francisco J., Pérez-Espinosa, Humberto, Meza-Aguilar, Marco A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112886
container_title Postharvest biology and technology
container_volume 212
creator Becerra-Sanchez, Francisco J.
Pérez-Espinosa, Humberto
Meza-Aguilar, Marco A.
description México has established itself as a significant global exporter of avocados, owing to the surging demand for this highly sought-after fruit. In response to market requirements, the assurance of specific quality parameters during the harvesting and international transportation phases has become indispensable. However, the predominant techniques employed for the assessment of these critical quality attributes are often intrusive and labor-intensive, resulting in substantial economic losses. In this research, we propose a novel approach, Smart Platform for Avocado Inspection and Analysis (SPAIA), which leverages intelligent audio analysis to nondestructively estimate key avocado quality parameters. Our methodology comprises a multi-faceted process, encompassing the design and development of a specialized capture device, meticulous data collection, and the formulation of robust audio-based estimation and evaluation models. As a result, our research proposes new aFI, aFIsum indices from Audio Signal Processing (ASP) techniques, and a new spectrogram, a product of image processing techniques and Intelligent Audio Analysis (IAA). Finally, the non-destructive approach yielded remarkable results in the estimation of the avocado quality parameters Seed Weight (SW), Dry Matter Index (DMI), Ripeness State (RS) and Uniform Ripeness (UR). The best regression models achieved a Pearson’s correlation index of 0.988, while the classification models exhibited an accuracy of 0.960. These findings not only demonstrate the viability of SPAIA as an innovative tool but also highlight its potential to revolutionize the avocado industry by offering a more efficient and sustainable means of ensuring fruit quality throughout the entire production and distribution process. •Development of a non-destructive system for estimating avocado quality parameters.•Construction of database with characteristics and quality aspect of Hass avocados.•Design of percussion prototype for automatic audio and metadata collection.•Proposal of indexes for the intelligent acoustic analysis in fruits.
doi_str_mv 10.1016/j.postharvbio.2024.112886
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153190108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925521424001315</els_id><sourcerecordid>3153190108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-caf19303b347177ff6a317c394335e848905585f10d987a5cc004db11de5b9933</originalsourceid><addsrcrecordid>eNqNkE9LxDAUxIMouK5-h3rz0jWvadrkKOtfWNiLnkOavmqWtukmaWG_vZV68OjpwWNmmPkRcgt0AxSK-8NmcCF-aT9V1m0ymuUbgEyI4oysQJQszRgvzsmKyoynPIP8klyFcKCUcs7FiuwfccLWDR32MXFN0rs-rTFEP5poJ0zCKUTsksb5ZP7aTkfbfyZ6ckbXLjmOurXxlAza6w4j-nBNLhrdBrz5vWvy8fz0vn1Nd_uXt-3DLjWZFDE1ugHJKKtYXkJZNk2hGZSGyZwxjiIXcu4neAO0lqLU3BhK87oCqJFXUjK2JndL7uDdcZyrqc4Gg22re3RjUAw4A0mBilkqF6nxLgSPjRr8PMSfFFD1A1Ed1B-I6geiWiDO3u3ixXnLZNGrYCz2Bmvr0URVO_uPlG-3d4H9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153190108</pqid></control><display><type>article</type><title>Development of non-destructive system for estimating avocado quality parameters</title><source>Elsevier ScienceDirect Journals</source><creator>Becerra-Sanchez, Francisco J. ; Pérez-Espinosa, Humberto ; Meza-Aguilar, Marco A.</creator><creatorcontrib>Becerra-Sanchez, Francisco J. ; Pérez-Espinosa, Humberto ; Meza-Aguilar, Marco A.</creatorcontrib><description>México has established itself as a significant global exporter of avocados, owing to the surging demand for this highly sought-after fruit. In response to market requirements, the assurance of specific quality parameters during the harvesting and international transportation phases has become indispensable. However, the predominant techniques employed for the assessment of these critical quality attributes are often intrusive and labor-intensive, resulting in substantial economic losses. In this research, we propose a novel approach, Smart Platform for Avocado Inspection and Analysis (SPAIA), which leverages intelligent audio analysis to nondestructively estimate key avocado quality parameters. Our methodology comprises a multi-faceted process, encompassing the design and development of a specialized capture device, meticulous data collection, and the formulation of robust audio-based estimation and evaluation models. As a result, our research proposes new aFI, aFIsum indices from Audio Signal Processing (ASP) techniques, and a new spectrogram, a product of image processing techniques and Intelligent Audio Analysis (IAA). Finally, the non-destructive approach yielded remarkable results in the estimation of the avocado quality parameters Seed Weight (SW), Dry Matter Index (DMI), Ripeness State (RS) and Uniform Ripeness (UR). The best regression models achieved a Pearson’s correlation index of 0.988, while the classification models exhibited an accuracy of 0.960. These findings not only demonstrate the viability of SPAIA as an innovative tool but also highlight its potential to revolutionize the avocado industry by offering a more efficient and sustainable means of ensuring fruit quality throughout the entire production and distribution process. •Development of a non-destructive system for estimating avocado quality parameters.•Construction of database with characteristics and quality aspect of Hass avocados.•Design of percussion prototype for automatic audio and metadata collection.•Proposal of indexes for the intelligent acoustic analysis in fruits.</description><identifier>ISSN: 0925-5214</identifier><identifier>EISSN: 1873-2356</identifier><identifier>DOI: 10.1016/j.postharvbio.2024.112886</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Audio spectrograms ; Automatic classification ; Avocado ; avocados ; data collection ; Estimation of quality parameters ; fruit quality ; fruits ; industry ; markets ; Mexico ; Ripeness state ; seed weight ; transportation ; viability</subject><ispartof>Postharvest biology and technology, 2024-06, Vol.212, p.112886, Article 112886</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-caf19303b347177ff6a317c394335e848905585f10d987a5cc004db11de5b9933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925521424001315$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Becerra-Sanchez, Francisco J.</creatorcontrib><creatorcontrib>Pérez-Espinosa, Humberto</creatorcontrib><creatorcontrib>Meza-Aguilar, Marco A.</creatorcontrib><title>Development of non-destructive system for estimating avocado quality parameters</title><title>Postharvest biology and technology</title><description>México has established itself as a significant global exporter of avocados, owing to the surging demand for this highly sought-after fruit. In response to market requirements, the assurance of specific quality parameters during the harvesting and international transportation phases has become indispensable. However, the predominant techniques employed for the assessment of these critical quality attributes are often intrusive and labor-intensive, resulting in substantial economic losses. In this research, we propose a novel approach, Smart Platform for Avocado Inspection and Analysis (SPAIA), which leverages intelligent audio analysis to nondestructively estimate key avocado quality parameters. Our methodology comprises a multi-faceted process, encompassing the design and development of a specialized capture device, meticulous data collection, and the formulation of robust audio-based estimation and evaluation models. As a result, our research proposes new aFI, aFIsum indices from Audio Signal Processing (ASP) techniques, and a new spectrogram, a product of image processing techniques and Intelligent Audio Analysis (IAA). Finally, the non-destructive approach yielded remarkable results in the estimation of the avocado quality parameters Seed Weight (SW), Dry Matter Index (DMI), Ripeness State (RS) and Uniform Ripeness (UR). The best regression models achieved a Pearson’s correlation index of 0.988, while the classification models exhibited an accuracy of 0.960. These findings not only demonstrate the viability of SPAIA as an innovative tool but also highlight its potential to revolutionize the avocado industry by offering a more efficient and sustainable means of ensuring fruit quality throughout the entire production and distribution process. •Development of a non-destructive system for estimating avocado quality parameters.•Construction of database with characteristics and quality aspect of Hass avocados.•Design of percussion prototype for automatic audio and metadata collection.•Proposal of indexes for the intelligent acoustic analysis in fruits.</description><subject>Audio spectrograms</subject><subject>Automatic classification</subject><subject>Avocado</subject><subject>avocados</subject><subject>data collection</subject><subject>Estimation of quality parameters</subject><subject>fruit quality</subject><subject>fruits</subject><subject>industry</subject><subject>markets</subject><subject>Mexico</subject><subject>Ripeness state</subject><subject>seed weight</subject><subject>transportation</subject><subject>viability</subject><issn>0925-5214</issn><issn>1873-2356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LxDAUxIMouK5-h3rz0jWvadrkKOtfWNiLnkOavmqWtukmaWG_vZV68OjpwWNmmPkRcgt0AxSK-8NmcCF-aT9V1m0ymuUbgEyI4oysQJQszRgvzsmKyoynPIP8klyFcKCUcs7FiuwfccLWDR32MXFN0rs-rTFEP5poJ0zCKUTsksb5ZP7aTkfbfyZ6ckbXLjmOurXxlAza6w4j-nBNLhrdBrz5vWvy8fz0vn1Nd_uXt-3DLjWZFDE1ugHJKKtYXkJZNk2hGZSGyZwxjiIXcu4neAO0lqLU3BhK87oCqJFXUjK2JndL7uDdcZyrqc4Gg22re3RjUAw4A0mBilkqF6nxLgSPjRr8PMSfFFD1A1Ed1B-I6geiWiDO3u3ixXnLZNGrYCz2Bmvr0URVO_uPlG-3d4H9</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Becerra-Sanchez, Francisco J.</creator><creator>Pérez-Espinosa, Humberto</creator><creator>Meza-Aguilar, Marco A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>202406</creationdate><title>Development of non-destructive system for estimating avocado quality parameters</title><author>Becerra-Sanchez, Francisco J. ; Pérez-Espinosa, Humberto ; Meza-Aguilar, Marco A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-caf19303b347177ff6a317c394335e848905585f10d987a5cc004db11de5b9933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Audio spectrograms</topic><topic>Automatic classification</topic><topic>Avocado</topic><topic>avocados</topic><topic>data collection</topic><topic>Estimation of quality parameters</topic><topic>fruit quality</topic><topic>fruits</topic><topic>industry</topic><topic>markets</topic><topic>Mexico</topic><topic>Ripeness state</topic><topic>seed weight</topic><topic>transportation</topic><topic>viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becerra-Sanchez, Francisco J.</creatorcontrib><creatorcontrib>Pérez-Espinosa, Humberto</creatorcontrib><creatorcontrib>Meza-Aguilar, Marco A.</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Postharvest biology and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becerra-Sanchez, Francisco J.</au><au>Pérez-Espinosa, Humberto</au><au>Meza-Aguilar, Marco A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of non-destructive system for estimating avocado quality parameters</atitle><jtitle>Postharvest biology and technology</jtitle><date>2024-06</date><risdate>2024</risdate><volume>212</volume><spage>112886</spage><pages>112886-</pages><artnum>112886</artnum><issn>0925-5214</issn><eissn>1873-2356</eissn><abstract>México has established itself as a significant global exporter of avocados, owing to the surging demand for this highly sought-after fruit. In response to market requirements, the assurance of specific quality parameters during the harvesting and international transportation phases has become indispensable. However, the predominant techniques employed for the assessment of these critical quality attributes are often intrusive and labor-intensive, resulting in substantial economic losses. In this research, we propose a novel approach, Smart Platform for Avocado Inspection and Analysis (SPAIA), which leverages intelligent audio analysis to nondestructively estimate key avocado quality parameters. Our methodology comprises a multi-faceted process, encompassing the design and development of a specialized capture device, meticulous data collection, and the formulation of robust audio-based estimation and evaluation models. As a result, our research proposes new aFI, aFIsum indices from Audio Signal Processing (ASP) techniques, and a new spectrogram, a product of image processing techniques and Intelligent Audio Analysis (IAA). Finally, the non-destructive approach yielded remarkable results in the estimation of the avocado quality parameters Seed Weight (SW), Dry Matter Index (DMI), Ripeness State (RS) and Uniform Ripeness (UR). The best regression models achieved a Pearson’s correlation index of 0.988, while the classification models exhibited an accuracy of 0.960. These findings not only demonstrate the viability of SPAIA as an innovative tool but also highlight its potential to revolutionize the avocado industry by offering a more efficient and sustainable means of ensuring fruit quality throughout the entire production and distribution process. •Development of a non-destructive system for estimating avocado quality parameters.•Construction of database with characteristics and quality aspect of Hass avocados.•Design of percussion prototype for automatic audio and metadata collection.•Proposal of indexes for the intelligent acoustic analysis in fruits.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.postharvbio.2024.112886</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-5214
ispartof Postharvest biology and technology, 2024-06, Vol.212, p.112886, Article 112886
issn 0925-5214
1873-2356
language eng
recordid cdi_proquest_miscellaneous_3153190108
source Elsevier ScienceDirect Journals
subjects Audio spectrograms
Automatic classification
Avocado
avocados
data collection
Estimation of quality parameters
fruit quality
fruits
industry
markets
Mexico
Ripeness state
seed weight
transportation
viability
title Development of non-destructive system for estimating avocado quality parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20non-destructive%20system%20for%20estimating%20avocado%20quality%20parameters&rft.jtitle=Postharvest%20biology%20and%20technology&rft.au=Becerra-Sanchez,%20Francisco%20J.&rft.date=2024-06&rft.volume=212&rft.spage=112886&rft.pages=112886-&rft.artnum=112886&rft.issn=0925-5214&rft.eissn=1873-2356&rft_id=info:doi/10.1016/j.postharvbio.2024.112886&rft_dat=%3Cproquest_cross%3E3153190108%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153190108&rft_id=info:pmid/&rft_els_id=S0925521424001315&rfr_iscdi=true