Carbon-Coated Tin-Titanate derived SnO2/TiO2 nanowires as High-Performance anode for Lithium-Ion batteries

[Display omitted] Tin dioxide (SnO2) is a promising alternative material to graphite anode, but the large volume change induced electrode pulverization issue has limited its application in lithium-ion batteries (LIBs). In contrast, titanium dioxide (TiO2) anode shows high structure stability upon li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2024-05, Vol.661, p.888-896
Hauptverfasser: Ge, Qianjiao, Ma, Zhenhan, Yao, Menglong, Dong, Hao, Chen, Xinyang, Chen, Shiqi, Yao, Tianhao, Ji, Xin, Li, Li, Wang, Hongkang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 896
container_issue
container_start_page 888
container_title Journal of colloid and interface science
container_volume 661
creator Ge, Qianjiao
Ma, Zhenhan
Yao, Menglong
Dong, Hao
Chen, Xinyang
Chen, Shiqi
Yao, Tianhao
Ji, Xin
Li, Li
Wang, Hongkang
description [Display omitted] Tin dioxide (SnO2) is a promising alternative material to graphite anode, but the large volume change induced electrode pulverization issue has limited its application in lithium-ion batteries (LIBs). In contrast, titanium dioxide (TiO2) anode shows high structure stability upon lithium insertion/extraction, but with low specific capacity. To overcome their inherent disadvantages, combination of SnO2 with TiO2 and highly conductive carbon material is an effective way. Herein, we report a facile fabrication method of carbon-coated SnO2/TiO2 nanowires (SnO2/TiO2@C) using tin titanate nanowires as precursor, which are prepared by reacting SnCl2·2H2O with layered sodium titanate (Na2Ti3O7) nanowires in the aqueous solution though the ion exchange between Sn2+ and Na+. After annealing under argon atmosphere, the hydrothermally carbon-coated tin-titanate nanowires decompose, forming a unique hybrid structure, where ultrafine SnO2 nanoparticles are uniformly embedded within the TiO2 substrate with carbon coating. Consequently, the SnO2/TiO2@C nanowires demonstrate excellent lithium storage capacity with high pseudocapacitance contribution, excellent reversible capacity, and long-term cycling stability (673.7/510.5 mAh/g at 0.5/1.0 A/g after 250/800 cycles), owing to the unique hybrid structure, as the well-dispersion of ultra-small SnO2 within TiO2 nanowire substrate with simultaneous carbon coating efficiently suppresses the volume changes of SnO2, provides abundant reactive sites for lithium storage, and enhances the electrical conductivity with shortened ion transport distance.
doi_str_mv 10.1016/j.jcis.2024.02.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153189412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724002510</els_id><sourcerecordid>3153189412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-2d635c9fe36aec8039cfdcca8a78005226814b53d82595e3185e19d319b5014a3</originalsourceid><addsrcrecordid>eNqFUcGKFDEQDaLguPoDnnL0kt6qpNPTAS8yqLswMILjOWSSajfNTLImPSv-_WYYz3oqXtV7D-o9xt4jdAg43M7d7GPtJMi-A9kB6hdshWC0WCOol2wFIFGYtVm_Zm9qnQEQtTYrNm9cOeQkNtktFPg-JrGPi0sN8UAlPrXl97STt_u4kzy5lH_HQpW7yu_izwfxjcqUy8klT7wdA_EG-TYuD_F8Evc58YNblmZE9S17NbljpXd_5w378eXzfnMntruv95tPW-HVMCxChkFpbyZSgyM_gjJ-Ct670a1HAC3lMGJ_0CqMUhtNCkdNaIJCc9CAvVM37MPV97HkX2eqiz3F6ul4dInyuVqFuolMj_K_VGlkb8yIZmhUeaX6kmstNNnHEk-u_LEI9tKBne2lA3vpwIK0rYMm-ngVUfv3KVKx1UdqWYUWol9syPFf8mcSoI63</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924998196</pqid></control><display><type>article</type><title>Carbon-Coated Tin-Titanate derived SnO2/TiO2 nanowires as High-Performance anode for Lithium-Ion batteries</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Ge, Qianjiao ; Ma, Zhenhan ; Yao, Menglong ; Dong, Hao ; Chen, Xinyang ; Chen, Shiqi ; Yao, Tianhao ; Ji, Xin ; Li, Li ; Wang, Hongkang</creator><creatorcontrib>Ge, Qianjiao ; Ma, Zhenhan ; Yao, Menglong ; Dong, Hao ; Chen, Xinyang ; Chen, Shiqi ; Yao, Tianhao ; Ji, Xin ; Li, Li ; Wang, Hongkang</creatorcontrib><description>[Display omitted] Tin dioxide (SnO2) is a promising alternative material to graphite anode, but the large volume change induced electrode pulverization issue has limited its application in lithium-ion batteries (LIBs). In contrast, titanium dioxide (TiO2) anode shows high structure stability upon lithium insertion/extraction, but with low specific capacity. To overcome their inherent disadvantages, combination of SnO2 with TiO2 and highly conductive carbon material is an effective way. Herein, we report a facile fabrication method of carbon-coated SnO2/TiO2 nanowires (SnO2/TiO2@C) using tin titanate nanowires as precursor, which are prepared by reacting SnCl2·2H2O with layered sodium titanate (Na2Ti3O7) nanowires in the aqueous solution though the ion exchange between Sn2+ and Na+. After annealing under argon atmosphere, the hydrothermally carbon-coated tin-titanate nanowires decompose, forming a unique hybrid structure, where ultrafine SnO2 nanoparticles are uniformly embedded within the TiO2 substrate with carbon coating. Consequently, the SnO2/TiO2@C nanowires demonstrate excellent lithium storage capacity with high pseudocapacitance contribution, excellent reversible capacity, and long-term cycling stability (673.7/510.5 mAh/g at 0.5/1.0 A/g after 250/800 cycles), owing to the unique hybrid structure, as the well-dispersion of ultra-small SnO2 within TiO2 nanowire substrate with simultaneous carbon coating efficiently suppresses the volume changes of SnO2, provides abundant reactive sites for lithium storage, and enhances the electrical conductivity with shortened ion transport distance.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.02.015</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>anodes ; aqueous solutions ; Carbon coating ; electrical conductivity ; graphene ; grinding ; ion exchange ; lithium ; Lithium storage behavior ; Lithium-ion batteries ; nanoparticles ; nanowires ; SnO2/TiO2 ; sodium ; tin ; tin dioxide ; Tin-titanate nanowires ; titanium dioxide</subject><ispartof>Journal of colloid and interface science, 2024-05, Vol.661, p.888-896</ispartof><rights>2024 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-2d635c9fe36aec8039cfdcca8a78005226814b53d82595e3185e19d319b5014a3</citedby><cites>FETCH-LOGICAL-c366t-2d635c9fe36aec8039cfdcca8a78005226814b53d82595e3185e19d319b5014a3</cites><orcidid>0000-0003-0208-7181 ; 0000-0002-3736-1964</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2024.02.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Ge, Qianjiao</creatorcontrib><creatorcontrib>Ma, Zhenhan</creatorcontrib><creatorcontrib>Yao, Menglong</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><creatorcontrib>Chen, Xinyang</creatorcontrib><creatorcontrib>Chen, Shiqi</creatorcontrib><creatorcontrib>Yao, Tianhao</creatorcontrib><creatorcontrib>Ji, Xin</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Wang, Hongkang</creatorcontrib><title>Carbon-Coated Tin-Titanate derived SnO2/TiO2 nanowires as High-Performance anode for Lithium-Ion batteries</title><title>Journal of colloid and interface science</title><description>[Display omitted] Tin dioxide (SnO2) is a promising alternative material to graphite anode, but the large volume change induced electrode pulverization issue has limited its application in lithium-ion batteries (LIBs). In contrast, titanium dioxide (TiO2) anode shows high structure stability upon lithium insertion/extraction, but with low specific capacity. To overcome their inherent disadvantages, combination of SnO2 with TiO2 and highly conductive carbon material is an effective way. Herein, we report a facile fabrication method of carbon-coated SnO2/TiO2 nanowires (SnO2/TiO2@C) using tin titanate nanowires as precursor, which are prepared by reacting SnCl2·2H2O with layered sodium titanate (Na2Ti3O7) nanowires in the aqueous solution though the ion exchange between Sn2+ and Na+. After annealing under argon atmosphere, the hydrothermally carbon-coated tin-titanate nanowires decompose, forming a unique hybrid structure, where ultrafine SnO2 nanoparticles are uniformly embedded within the TiO2 substrate with carbon coating. Consequently, the SnO2/TiO2@C nanowires demonstrate excellent lithium storage capacity with high pseudocapacitance contribution, excellent reversible capacity, and long-term cycling stability (673.7/510.5 mAh/g at 0.5/1.0 A/g after 250/800 cycles), owing to the unique hybrid structure, as the well-dispersion of ultra-small SnO2 within TiO2 nanowire substrate with simultaneous carbon coating efficiently suppresses the volume changes of SnO2, provides abundant reactive sites for lithium storage, and enhances the electrical conductivity with shortened ion transport distance.</description><subject>anodes</subject><subject>aqueous solutions</subject><subject>Carbon coating</subject><subject>electrical conductivity</subject><subject>graphene</subject><subject>grinding</subject><subject>ion exchange</subject><subject>lithium</subject><subject>Lithium storage behavior</subject><subject>Lithium-ion batteries</subject><subject>nanoparticles</subject><subject>nanowires</subject><subject>SnO2/TiO2</subject><subject>sodium</subject><subject>tin</subject><subject>tin dioxide</subject><subject>Tin-titanate nanowires</subject><subject>titanium dioxide</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUcGKFDEQDaLguPoDnnL0kt6qpNPTAS8yqLswMILjOWSSajfNTLImPSv-_WYYz3oqXtV7D-o9xt4jdAg43M7d7GPtJMi-A9kB6hdshWC0WCOol2wFIFGYtVm_Zm9qnQEQtTYrNm9cOeQkNtktFPg-JrGPi0sN8UAlPrXl97STt_u4kzy5lH_HQpW7yu_izwfxjcqUy8klT7wdA_EG-TYuD_F8Evc58YNblmZE9S17NbljpXd_5w378eXzfnMntruv95tPW-HVMCxChkFpbyZSgyM_gjJ-Ct670a1HAC3lMGJ_0CqMUhtNCkdNaIJCc9CAvVM37MPV97HkX2eqiz3F6ul4dInyuVqFuolMj_K_VGlkb8yIZmhUeaX6kmstNNnHEk-u_LEI9tKBne2lA3vpwIK0rYMm-ngVUfv3KVKx1UdqWYUWol9syPFf8mcSoI63</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Ge, Qianjiao</creator><creator>Ma, Zhenhan</creator><creator>Yao, Menglong</creator><creator>Dong, Hao</creator><creator>Chen, Xinyang</creator><creator>Chen, Shiqi</creator><creator>Yao, Tianhao</creator><creator>Ji, Xin</creator><creator>Li, Li</creator><creator>Wang, Hongkang</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-0208-7181</orcidid><orcidid>https://orcid.org/0000-0002-3736-1964</orcidid></search><sort><creationdate>202405</creationdate><title>Carbon-Coated Tin-Titanate derived SnO2/TiO2 nanowires as High-Performance anode for Lithium-Ion batteries</title><author>Ge, Qianjiao ; Ma, Zhenhan ; Yao, Menglong ; Dong, Hao ; Chen, Xinyang ; Chen, Shiqi ; Yao, Tianhao ; Ji, Xin ; Li, Li ; Wang, Hongkang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-2d635c9fe36aec8039cfdcca8a78005226814b53d82595e3185e19d319b5014a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>anodes</topic><topic>aqueous solutions</topic><topic>Carbon coating</topic><topic>electrical conductivity</topic><topic>graphene</topic><topic>grinding</topic><topic>ion exchange</topic><topic>lithium</topic><topic>Lithium storage behavior</topic><topic>Lithium-ion batteries</topic><topic>nanoparticles</topic><topic>nanowires</topic><topic>SnO2/TiO2</topic><topic>sodium</topic><topic>tin</topic><topic>tin dioxide</topic><topic>Tin-titanate nanowires</topic><topic>titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Qianjiao</creatorcontrib><creatorcontrib>Ma, Zhenhan</creatorcontrib><creatorcontrib>Yao, Menglong</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><creatorcontrib>Chen, Xinyang</creatorcontrib><creatorcontrib>Chen, Shiqi</creatorcontrib><creatorcontrib>Yao, Tianhao</creatorcontrib><creatorcontrib>Ji, Xin</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Wang, Hongkang</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Qianjiao</au><au>Ma, Zhenhan</au><au>Yao, Menglong</au><au>Dong, Hao</au><au>Chen, Xinyang</au><au>Chen, Shiqi</au><au>Yao, Tianhao</au><au>Ji, Xin</au><au>Li, Li</au><au>Wang, Hongkang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon-Coated Tin-Titanate derived SnO2/TiO2 nanowires as High-Performance anode for Lithium-Ion batteries</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2024-05</date><risdate>2024</risdate><volume>661</volume><spage>888</spage><epage>896</epage><pages>888-896</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] Tin dioxide (SnO2) is a promising alternative material to graphite anode, but the large volume change induced electrode pulverization issue has limited its application in lithium-ion batteries (LIBs). In contrast, titanium dioxide (TiO2) anode shows high structure stability upon lithium insertion/extraction, but with low specific capacity. To overcome their inherent disadvantages, combination of SnO2 with TiO2 and highly conductive carbon material is an effective way. Herein, we report a facile fabrication method of carbon-coated SnO2/TiO2 nanowires (SnO2/TiO2@C) using tin titanate nanowires as precursor, which are prepared by reacting SnCl2·2H2O with layered sodium titanate (Na2Ti3O7) nanowires in the aqueous solution though the ion exchange between Sn2+ and Na+. After annealing under argon atmosphere, the hydrothermally carbon-coated tin-titanate nanowires decompose, forming a unique hybrid structure, where ultrafine SnO2 nanoparticles are uniformly embedded within the TiO2 substrate with carbon coating. Consequently, the SnO2/TiO2@C nanowires demonstrate excellent lithium storage capacity with high pseudocapacitance contribution, excellent reversible capacity, and long-term cycling stability (673.7/510.5 mAh/g at 0.5/1.0 A/g after 250/800 cycles), owing to the unique hybrid structure, as the well-dispersion of ultra-small SnO2 within TiO2 nanowire substrate with simultaneous carbon coating efficiently suppresses the volume changes of SnO2, provides abundant reactive sites for lithium storage, and enhances the electrical conductivity with shortened ion transport distance.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2024.02.015</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0208-7181</orcidid><orcidid>https://orcid.org/0000-0002-3736-1964</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2024-05, Vol.661, p.888-896
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_3153189412
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects anodes
aqueous solutions
Carbon coating
electrical conductivity
graphene
grinding
ion exchange
lithium
Lithium storage behavior
Lithium-ion batteries
nanoparticles
nanowires
SnO2/TiO2
sodium
tin
tin dioxide
Tin-titanate nanowires
titanium dioxide
title Carbon-Coated Tin-Titanate derived SnO2/TiO2 nanowires as High-Performance anode for Lithium-Ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon-Coated%20Tin-Titanate%20derived%20SnO2/TiO2%20nanowires%20as%20High-Performance%20anode%20for%20Lithium-Ion%20batteries&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Ge,%20Qianjiao&rft.date=2024-05&rft.volume=661&rft.spage=888&rft.epage=896&rft.pages=888-896&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.02.015&rft_dat=%3Cproquest_cross%3E3153189412%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2924998196&rft_id=info:pmid/&rft_els_id=S0021979724002510&rfr_iscdi=true