Modelling bivariate failure time data via bivariate extended Chen distribution

Fatal Shock, competing risks and stress models are utilized in reliability and survival analysis to characterize various application types. In this context, this paper aimed to introduce a new class of bivariate distribution based on the Marshall–Olkin type. The proposed distribution termed as the B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic environmental research and risk assessment 2023-09, Vol.37 (9), p.3517-3525
Hauptverfasser: Kilany, N. M., El-Qareb, F. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3525
container_issue 9
container_start_page 3517
container_title Stochastic environmental research and risk assessment
container_volume 37
creator Kilany, N. M.
El-Qareb, F. G.
description Fatal Shock, competing risks and stress models are utilized in reliability and survival analysis to characterize various application types. In this context, this paper aimed to introduce a new class of bivariate distribution based on the Marshall–Olkin type. The proposed distribution termed as the Bivariate Extended Chen (BEC) distribution so that the marginals have Extended Chen distribution. Some properties of this distribution are derived and explained. The BEC distribution parameters are estimated using the maximum likelihood method. Finally, two applications to real life applications highlight the significance and adaptability of the Bivariate Extended Chen (BEC) distribution. The BEC distribution offers a superior fit than different competing bivariate distributions, illustrating its flexibility and applicability in modelling.
doi_str_mv 10.1007/s00477-023-02461-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153188780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2859362963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-879e38e813bacdd69acb531109c0cfa8063b3398dee0f3cd5f120b1d0c730cd73</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhisEEtPYH-BUiQuXglO3TXJEE18SHxc4R2nijqCuHUm7wb8nMASIAwfLlvy8r-w3SQ4ZnDAAfhoACs4zyDFWUbFss5NMWIFVhnkpd7_nAvaTWQiujqISpWQwSe5ue0tt67pFWru19k4PlDbataOndHBLSq0edLp2-teeXgfqLNl0_kRdal0YvKvHwfXdQbLX6DbQ7KtPk8eL84f5VXZzf3k9P7vJDBZ8yASXhIIEw1obayupTV0iYyANmEYLqLBGlMISQYPGlg3LoWYWDEcwluM0Od76rnz_MlIY1NIFEx_RHfVjUMiinRBcQESP_qDP_ei7eJ3KRSmxymWFkcq3lPF9CJ4atfJuqf2bYqA-UlbblFVMWX2mrDZRhFtRiHC3IP9j_Y_qHSjggEU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859362963</pqid></control><display><type>article</type><title>Modelling bivariate failure time data via bivariate extended Chen distribution</title><source>SpringerLink Journals</source><creator>Kilany, N. M. ; El-Qareb, F. G.</creator><creatorcontrib>Kilany, N. M. ; El-Qareb, F. G.</creatorcontrib><description>Fatal Shock, competing risks and stress models are utilized in reliability and survival analysis to characterize various application types. In this context, this paper aimed to introduce a new class of bivariate distribution based on the Marshall–Olkin type. The proposed distribution termed as the Bivariate Extended Chen (BEC) distribution so that the marginals have Extended Chen distribution. Some properties of this distribution are derived and explained. The BEC distribution parameters are estimated using the maximum likelihood method. Finally, two applications to real life applications highlight the significance and adaptability of the Bivariate Extended Chen (BEC) distribution. The BEC distribution offers a superior fit than different competing bivariate distributions, illustrating its flexibility and applicability in modelling.</description><identifier>ISSN: 1436-3240</identifier><identifier>EISSN: 1436-3259</identifier><identifier>DOI: 10.1007/s00477-023-02461-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptability ; Aquatic Pollution ; Bivariate analysis ; Chemistry and Earth Sciences ; Computational Intelligence ; Computer Science ; Earth and Environmental Science ; Earth Sciences ; Environment ; Environmental research ; Failure times ; Lifetime ; Math. Appl. in Environmental Science ; Maximum likelihood method ; Modelling ; Original Paper ; Parameter estimation ; Physics ; Probability Theory and Stochastic Processes ; Random variables ; Reliability analysis ; risk ; Risk assessment ; Statistics for Engineering ; Survival analysis ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Stochastic environmental research and risk assessment, 2023-09, Vol.37 (9), p.3517-3525</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c347t-879e38e813bacdd69acb531109c0cfa8063b3398dee0f3cd5f120b1d0c730cd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00477-023-02461-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00477-023-02461-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kilany, N. M.</creatorcontrib><creatorcontrib>El-Qareb, F. G.</creatorcontrib><title>Modelling bivariate failure time data via bivariate extended Chen distribution</title><title>Stochastic environmental research and risk assessment</title><addtitle>Stoch Environ Res Risk Assess</addtitle><description>Fatal Shock, competing risks and stress models are utilized in reliability and survival analysis to characterize various application types. In this context, this paper aimed to introduce a new class of bivariate distribution based on the Marshall–Olkin type. The proposed distribution termed as the Bivariate Extended Chen (BEC) distribution so that the marginals have Extended Chen distribution. Some properties of this distribution are derived and explained. The BEC distribution parameters are estimated using the maximum likelihood method. Finally, two applications to real life applications highlight the significance and adaptability of the Bivariate Extended Chen (BEC) distribution. The BEC distribution offers a superior fit than different competing bivariate distributions, illustrating its flexibility and applicability in modelling.</description><subject>Adaptability</subject><subject>Aquatic Pollution</subject><subject>Bivariate analysis</subject><subject>Chemistry and Earth Sciences</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>Environmental research</subject><subject>Failure times</subject><subject>Lifetime</subject><subject>Math. Appl. in Environmental Science</subject><subject>Maximum likelihood method</subject><subject>Modelling</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Physics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Random variables</subject><subject>Reliability analysis</subject><subject>risk</subject><subject>Risk assessment</subject><subject>Statistics for Engineering</subject><subject>Survival analysis</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1436-3240</issn><issn>1436-3259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE1PwzAMhisEEtPYH-BUiQuXglO3TXJEE18SHxc4R2nijqCuHUm7wb8nMASIAwfLlvy8r-w3SQ4ZnDAAfhoACs4zyDFWUbFss5NMWIFVhnkpd7_nAvaTWQiujqISpWQwSe5ue0tt67pFWru19k4PlDbataOndHBLSq0edLp2-teeXgfqLNl0_kRdal0YvKvHwfXdQbLX6DbQ7KtPk8eL84f5VXZzf3k9P7vJDBZ8yASXhIIEw1obayupTV0iYyANmEYLqLBGlMISQYPGlg3LoWYWDEcwluM0Od76rnz_MlIY1NIFEx_RHfVjUMiinRBcQESP_qDP_ei7eJ3KRSmxymWFkcq3lPF9CJ4atfJuqf2bYqA-UlbblFVMWX2mrDZRhFtRiHC3IP9j_Y_qHSjggEU</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Kilany, N. M.</creator><creator>El-Qareb, F. G.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20230901</creationdate><title>Modelling bivariate failure time data via bivariate extended Chen distribution</title><author>Kilany, N. M. ; El-Qareb, F. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-879e38e813bacdd69acb531109c0cfa8063b3398dee0f3cd5f120b1d0c730cd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptability</topic><topic>Aquatic Pollution</topic><topic>Bivariate analysis</topic><topic>Chemistry and Earth Sciences</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>Environmental research</topic><topic>Failure times</topic><topic>Lifetime</topic><topic>Math. Appl. in Environmental Science</topic><topic>Maximum likelihood method</topic><topic>Modelling</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Physics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Random variables</topic><topic>Reliability analysis</topic><topic>risk</topic><topic>Risk assessment</topic><topic>Statistics for Engineering</topic><topic>Survival analysis</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kilany, N. M.</creatorcontrib><creatorcontrib>El-Qareb, F. G.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Stochastic environmental research and risk assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kilany, N. M.</au><au>El-Qareb, F. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling bivariate failure time data via bivariate extended Chen distribution</atitle><jtitle>Stochastic environmental research and risk assessment</jtitle><stitle>Stoch Environ Res Risk Assess</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>37</volume><issue>9</issue><spage>3517</spage><epage>3525</epage><pages>3517-3525</pages><issn>1436-3240</issn><eissn>1436-3259</eissn><abstract>Fatal Shock, competing risks and stress models are utilized in reliability and survival analysis to characterize various application types. In this context, this paper aimed to introduce a new class of bivariate distribution based on the Marshall–Olkin type. The proposed distribution termed as the Bivariate Extended Chen (BEC) distribution so that the marginals have Extended Chen distribution. Some properties of this distribution are derived and explained. The BEC distribution parameters are estimated using the maximum likelihood method. Finally, two applications to real life applications highlight the significance and adaptability of the Bivariate Extended Chen (BEC) distribution. The BEC distribution offers a superior fit than different competing bivariate distributions, illustrating its flexibility and applicability in modelling.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00477-023-02461-w</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1436-3240
ispartof Stochastic environmental research and risk assessment, 2023-09, Vol.37 (9), p.3517-3525
issn 1436-3240
1436-3259
language eng
recordid cdi_proquest_miscellaneous_3153188780
source SpringerLink Journals
subjects Adaptability
Aquatic Pollution
Bivariate analysis
Chemistry and Earth Sciences
Computational Intelligence
Computer Science
Earth and Environmental Science
Earth Sciences
Environment
Environmental research
Failure times
Lifetime
Math. Appl. in Environmental Science
Maximum likelihood method
Modelling
Original Paper
Parameter estimation
Physics
Probability Theory and Stochastic Processes
Random variables
Reliability analysis
risk
Risk assessment
Statistics for Engineering
Survival analysis
Waste Water Technology
Water Management
Water Pollution Control
title Modelling bivariate failure time data via bivariate extended Chen distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20bivariate%20failure%20time%20data%20via%20bivariate%20extended%20Chen%20distribution&rft.jtitle=Stochastic%20environmental%20research%20and%20risk%20assessment&rft.au=Kilany,%20N.%20M.&rft.date=2023-09-01&rft.volume=37&rft.issue=9&rft.spage=3517&rft.epage=3525&rft.pages=3517-3525&rft.issn=1436-3240&rft.eissn=1436-3259&rft_id=info:doi/10.1007/s00477-023-02461-w&rft_dat=%3Cproquest_cross%3E2859362963%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859362963&rft_id=info:pmid/&rfr_iscdi=true