Oxygen vacancies in MnOx regulating reaction kinetics for aqueous zinc-ion batteries

[Display omitted] MnO2 cathode materials have presented challenges due to their poor conductivity, unstable structure, and sluggish diffusion kinetics for aqueous zinc-ion batteries (AZIBs). In this study, a nanostructured MnOx cathode material was synthesized using an acid etching method, Which int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2023-12, Vol.652, p.305-316
Hauptverfasser: Xu, Yuhui, Zhang, Gaini, Zhang, Jianhua, Wang, Xiaoxue, Wang, Jingjing, Jia, Shuting, Yuan, Yitong, Yang, Xiaoli, Xu, Kaihua, Wang, Chunran, Zhang, Kun, Li, Wenbin, Li, Xifei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 316
container_issue
container_start_page 305
container_title Journal of colloid and interface science
container_volume 652
creator Xu, Yuhui
Zhang, Gaini
Zhang, Jianhua
Wang, Xiaoxue
Wang, Jingjing
Jia, Shuting
Yuan, Yitong
Yang, Xiaoli
Xu, Kaihua
Wang, Chunran
Zhang, Kun
Li, Wenbin
Li, Xifei
description [Display omitted] MnO2 cathode materials have presented challenges due to their poor conductivity, unstable structure, and sluggish diffusion kinetics for aqueous zinc-ion batteries (AZIBs). In this study, a nanostructured MnOx cathode material was synthesized using an acid etching method, Which introduced abundant Mn(III) sites, resulting in the formation of numerous oxygen vacancies. Comprehensive characterizations revealed that these oxygen vacancies facilitated the reversible adsorption/desorption of Zn2+ ions and promoted efficient electron transfer. In addition, the designed mesoporous structure offered ample active sites and shortened the diffusion path for Zn2+ and H+ ions. Consequently, the nanosized MnOx cathode exhibited enhanced reaction kinetics, achieving a considerable reversible specific capacity of 388.7 mAh/g at 0.1 A/g and superior durability with 72.0% capacity retention over 2000 cycles at 3.0 A/g. The material delivered a maximum energy density of 639.7 Wh kg−1 at 159.94 W kg−1. Furthermore, a systematic analysis of the zinc storage mechanism was performed. This work demonstrates that engineering oxygen vacancies with nanostructure regulation provides valuable insights into optimizing MnO2 cathode materials for AZIBs.
doi_str_mv 10.1016/j.jcis.2023.08.084
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153188009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979723015679</els_id><sourcerecordid>2853944981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-9bb0263a313ecf4887db5b95501158530b6b55dc7cc9bac0d779a39cf515210e3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMIPcMqRS8I6jhNb4oIqXlJRL-VsORuncmidYqdVy9fjqJxBWmlX2pnZ2SHklkJGgZb3XdahDVkOOctAxCrOyISC5GlFgZ2TCUBOU1nJ6pJchdABUMq5nJDl4nBcGZfsNWqH1oTEuuTdLQ6JN6vdWg_WreKocbC9Sz6tM4PFkLS9T_TXzvS7kHxbh-m4rfUwGB81rslFq9fB3Pz2Kfl4flrOXtP54uVt9jhPkZXlkMq6hrxkmlFmsC2EqJqa15Lz0ZzgDOqy5rzBClHWGqGpKqmZxJZTnlMwbEruTrpb30czYVAbG9Cs19qNzhSjnFEhAOS_0Dzek0UhBY3Q_ARF34fgTau23m60PyoKakxbdWpMW41pKxCxikh6OJFM_HdvjVchpunQNNYbHFTT27_oP8lviKc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2853944981</pqid></control><display><type>article</type><title>Oxygen vacancies in MnOx regulating reaction kinetics for aqueous zinc-ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Xu, Yuhui ; Zhang, Gaini ; Zhang, Jianhua ; Wang, Xiaoxue ; Wang, Jingjing ; Jia, Shuting ; Yuan, Yitong ; Yang, Xiaoli ; Xu, Kaihua ; Wang, Chunran ; Zhang, Kun ; Li, Wenbin ; Li, Xifei</creator><creatorcontrib>Xu, Yuhui ; Zhang, Gaini ; Zhang, Jianhua ; Wang, Xiaoxue ; Wang, Jingjing ; Jia, Shuting ; Yuan, Yitong ; Yang, Xiaoli ; Xu, Kaihua ; Wang, Chunran ; Zhang, Kun ; Li, Wenbin ; Li, Xifei</creatorcontrib><description>[Display omitted] MnO2 cathode materials have presented challenges due to their poor conductivity, unstable structure, and sluggish diffusion kinetics for aqueous zinc-ion batteries (AZIBs). In this study, a nanostructured MnOx cathode material was synthesized using an acid etching method, Which introduced abundant Mn(III) sites, resulting in the formation of numerous oxygen vacancies. Comprehensive characterizations revealed that these oxygen vacancies facilitated the reversible adsorption/desorption of Zn2+ ions and promoted efficient electron transfer. In addition, the designed mesoporous structure offered ample active sites and shortened the diffusion path for Zn2+ and H+ ions. Consequently, the nanosized MnOx cathode exhibited enhanced reaction kinetics, achieving a considerable reversible specific capacity of 388.7 mAh/g at 0.1 A/g and superior durability with 72.0% capacity retention over 2000 cycles at 3.0 A/g. The material delivered a maximum energy density of 639.7 Wh kg−1 at 159.94 W kg−1. Furthermore, a systematic analysis of the zinc storage mechanism was performed. This work demonstrates that engineering oxygen vacancies with nanostructure regulation provides valuable insights into optimizing MnO2 cathode materials for AZIBs.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2023.08.084</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>adsorption ; cathodes ; desorption ; durability ; electron transfer ; energy density ; Manganese oxide ; Mesoporous structure ; Mn(III) site ; nanomaterials ; oxygen ; Oxygen vacancy ; porous media ; reaction kinetics ; zinc ; Zinc storage mechanism</subject><ispartof>Journal of colloid and interface science, 2023-12, Vol.652, p.305-316</ispartof><rights>2023 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-9bb0263a313ecf4887db5b95501158530b6b55dc7cc9bac0d779a39cf515210e3</citedby><cites>FETCH-LOGICAL-c366t-9bb0263a313ecf4887db5b95501158530b6b55dc7cc9bac0d779a39cf515210e3</cites><orcidid>0000-0002-4828-4183 ; 0000-0001-5678-333X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979723015679$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Xu, Yuhui</creatorcontrib><creatorcontrib>Zhang, Gaini</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><creatorcontrib>Wang, Xiaoxue</creatorcontrib><creatorcontrib>Wang, Jingjing</creatorcontrib><creatorcontrib>Jia, Shuting</creatorcontrib><creatorcontrib>Yuan, Yitong</creatorcontrib><creatorcontrib>Yang, Xiaoli</creatorcontrib><creatorcontrib>Xu, Kaihua</creatorcontrib><creatorcontrib>Wang, Chunran</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Li, Wenbin</creatorcontrib><creatorcontrib>Li, Xifei</creatorcontrib><title>Oxygen vacancies in MnOx regulating reaction kinetics for aqueous zinc-ion batteries</title><title>Journal of colloid and interface science</title><description>[Display omitted] MnO2 cathode materials have presented challenges due to their poor conductivity, unstable structure, and sluggish diffusion kinetics for aqueous zinc-ion batteries (AZIBs). In this study, a nanostructured MnOx cathode material was synthesized using an acid etching method, Which introduced abundant Mn(III) sites, resulting in the formation of numerous oxygen vacancies. Comprehensive characterizations revealed that these oxygen vacancies facilitated the reversible adsorption/desorption of Zn2+ ions and promoted efficient electron transfer. In addition, the designed mesoporous structure offered ample active sites and shortened the diffusion path for Zn2+ and H+ ions. Consequently, the nanosized MnOx cathode exhibited enhanced reaction kinetics, achieving a considerable reversible specific capacity of 388.7 mAh/g at 0.1 A/g and superior durability with 72.0% capacity retention over 2000 cycles at 3.0 A/g. The material delivered a maximum energy density of 639.7 Wh kg−1 at 159.94 W kg−1. Furthermore, a systematic analysis of the zinc storage mechanism was performed. This work demonstrates that engineering oxygen vacancies with nanostructure regulation provides valuable insights into optimizing MnO2 cathode materials for AZIBs.</description><subject>adsorption</subject><subject>cathodes</subject><subject>desorption</subject><subject>durability</subject><subject>electron transfer</subject><subject>energy density</subject><subject>Manganese oxide</subject><subject>Mesoporous structure</subject><subject>Mn(III) site</subject><subject>nanomaterials</subject><subject>oxygen</subject><subject>Oxygen vacancy</subject><subject>porous media</subject><subject>reaction kinetics</subject><subject>zinc</subject><subject>Zinc storage mechanism</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMIPcMqRS8I6jhNb4oIqXlJRL-VsORuncmidYqdVy9fjqJxBWmlX2pnZ2SHklkJGgZb3XdahDVkOOctAxCrOyISC5GlFgZ2TCUBOU1nJ6pJchdABUMq5nJDl4nBcGZfsNWqH1oTEuuTdLQ6JN6vdWg_WreKocbC9Sz6tM4PFkLS9T_TXzvS7kHxbh-m4rfUwGB81rslFq9fB3Pz2Kfl4flrOXtP54uVt9jhPkZXlkMq6hrxkmlFmsC2EqJqa15Lz0ZzgDOqy5rzBClHWGqGpKqmZxJZTnlMwbEruTrpb30czYVAbG9Cs19qNzhSjnFEhAOS_0Dzek0UhBY3Q_ARF34fgTau23m60PyoKakxbdWpMW41pKxCxikh6OJFM_HdvjVchpunQNNYbHFTT27_oP8lviKc</recordid><startdate>20231215</startdate><enddate>20231215</enddate><creator>Xu, Yuhui</creator><creator>Zhang, Gaini</creator><creator>Zhang, Jianhua</creator><creator>Wang, Xiaoxue</creator><creator>Wang, Jingjing</creator><creator>Jia, Shuting</creator><creator>Yuan, Yitong</creator><creator>Yang, Xiaoli</creator><creator>Xu, Kaihua</creator><creator>Wang, Chunran</creator><creator>Zhang, Kun</creator><creator>Li, Wenbin</creator><creator>Li, Xifei</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-4828-4183</orcidid><orcidid>https://orcid.org/0000-0001-5678-333X</orcidid></search><sort><creationdate>20231215</creationdate><title>Oxygen vacancies in MnOx regulating reaction kinetics for aqueous zinc-ion batteries</title><author>Xu, Yuhui ; Zhang, Gaini ; Zhang, Jianhua ; Wang, Xiaoxue ; Wang, Jingjing ; Jia, Shuting ; Yuan, Yitong ; Yang, Xiaoli ; Xu, Kaihua ; Wang, Chunran ; Zhang, Kun ; Li, Wenbin ; Li, Xifei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-9bb0263a313ecf4887db5b95501158530b6b55dc7cc9bac0d779a39cf515210e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adsorption</topic><topic>cathodes</topic><topic>desorption</topic><topic>durability</topic><topic>electron transfer</topic><topic>energy density</topic><topic>Manganese oxide</topic><topic>Mesoporous structure</topic><topic>Mn(III) site</topic><topic>nanomaterials</topic><topic>oxygen</topic><topic>Oxygen vacancy</topic><topic>porous media</topic><topic>reaction kinetics</topic><topic>zinc</topic><topic>Zinc storage mechanism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yuhui</creatorcontrib><creatorcontrib>Zhang, Gaini</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><creatorcontrib>Wang, Xiaoxue</creatorcontrib><creatorcontrib>Wang, Jingjing</creatorcontrib><creatorcontrib>Jia, Shuting</creatorcontrib><creatorcontrib>Yuan, Yitong</creatorcontrib><creatorcontrib>Yang, Xiaoli</creatorcontrib><creatorcontrib>Xu, Kaihua</creatorcontrib><creatorcontrib>Wang, Chunran</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Li, Wenbin</creatorcontrib><creatorcontrib>Li, Xifei</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yuhui</au><au>Zhang, Gaini</au><au>Zhang, Jianhua</au><au>Wang, Xiaoxue</au><au>Wang, Jingjing</au><au>Jia, Shuting</au><au>Yuan, Yitong</au><au>Yang, Xiaoli</au><au>Xu, Kaihua</au><au>Wang, Chunran</au><au>Zhang, Kun</au><au>Li, Wenbin</au><au>Li, Xifei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen vacancies in MnOx regulating reaction kinetics for aqueous zinc-ion batteries</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2023-12-15</date><risdate>2023</risdate><volume>652</volume><spage>305</spage><epage>316</epage><pages>305-316</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] MnO2 cathode materials have presented challenges due to their poor conductivity, unstable structure, and sluggish diffusion kinetics for aqueous zinc-ion batteries (AZIBs). In this study, a nanostructured MnOx cathode material was synthesized using an acid etching method, Which introduced abundant Mn(III) sites, resulting in the formation of numerous oxygen vacancies. Comprehensive characterizations revealed that these oxygen vacancies facilitated the reversible adsorption/desorption of Zn2+ ions and promoted efficient electron transfer. In addition, the designed mesoporous structure offered ample active sites and shortened the diffusion path for Zn2+ and H+ ions. Consequently, the nanosized MnOx cathode exhibited enhanced reaction kinetics, achieving a considerable reversible specific capacity of 388.7 mAh/g at 0.1 A/g and superior durability with 72.0% capacity retention over 2000 cycles at 3.0 A/g. The material delivered a maximum energy density of 639.7 Wh kg−1 at 159.94 W kg−1. Furthermore, a systematic analysis of the zinc storage mechanism was performed. This work demonstrates that engineering oxygen vacancies with nanostructure regulation provides valuable insights into optimizing MnO2 cathode materials for AZIBs.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2023.08.084</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4828-4183</orcidid><orcidid>https://orcid.org/0000-0001-5678-333X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2023-12, Vol.652, p.305-316
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_3153188009
source Elsevier ScienceDirect Journals
subjects adsorption
cathodes
desorption
durability
electron transfer
energy density
Manganese oxide
Mesoporous structure
Mn(III) site
nanomaterials
oxygen
Oxygen vacancy
porous media
reaction kinetics
zinc
Zinc storage mechanism
title Oxygen vacancies in MnOx regulating reaction kinetics for aqueous zinc-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20vacancies%20in%20MnOx%20regulating%20reaction%20kinetics%20for%20aqueous%20zinc-ion%20batteries&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Xu,%20Yuhui&rft.date=2023-12-15&rft.volume=652&rft.spage=305&rft.epage=316&rft.pages=305-316&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2023.08.084&rft_dat=%3Cproquest_cross%3E2853944981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2853944981&rft_id=info:pmid/&rft_els_id=S0021979723015679&rfr_iscdi=true