Oxygen vacancies in MnOx regulating reaction kinetics for aqueous zinc-ion batteries
[Display omitted] MnO2 cathode materials have presented challenges due to their poor conductivity, unstable structure, and sluggish diffusion kinetics for aqueous zinc-ion batteries (AZIBs). In this study, a nanostructured MnOx cathode material was synthesized using an acid etching method, Which int...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2023-12, Vol.652, p.305-316 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 316 |
---|---|
container_issue | |
container_start_page | 305 |
container_title | Journal of colloid and interface science |
container_volume | 652 |
creator | Xu, Yuhui Zhang, Gaini Zhang, Jianhua Wang, Xiaoxue Wang, Jingjing Jia, Shuting Yuan, Yitong Yang, Xiaoli Xu, Kaihua Wang, Chunran Zhang, Kun Li, Wenbin Li, Xifei |
description | [Display omitted]
MnO2 cathode materials have presented challenges due to their poor conductivity, unstable structure, and sluggish diffusion kinetics for aqueous zinc-ion batteries (AZIBs). In this study, a nanostructured MnOx cathode material was synthesized using an acid etching method, Which introduced abundant Mn(III) sites, resulting in the formation of numerous oxygen vacancies. Comprehensive characterizations revealed that these oxygen vacancies facilitated the reversible adsorption/desorption of Zn2+ ions and promoted efficient electron transfer. In addition, the designed mesoporous structure offered ample active sites and shortened the diffusion path for Zn2+ and H+ ions. Consequently, the nanosized MnOx cathode exhibited enhanced reaction kinetics, achieving a considerable reversible specific capacity of 388.7 mAh/g at 0.1 A/g and superior durability with 72.0% capacity retention over 2000 cycles at 3.0 A/g. The material delivered a maximum energy density of 639.7 Wh kg−1 at 159.94 W kg−1. Furthermore, a systematic analysis of the zinc storage mechanism was performed. This work demonstrates that engineering oxygen vacancies with nanostructure regulation provides valuable insights into optimizing MnO2 cathode materials for AZIBs. |
doi_str_mv | 10.1016/j.jcis.2023.08.084 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153188009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979723015679</els_id><sourcerecordid>2853944981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-9bb0263a313ecf4887db5b95501158530b6b55dc7cc9bac0d779a39cf515210e3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMIPcMqRS8I6jhNb4oIqXlJRL-VsORuncmidYqdVy9fjqJxBWmlX2pnZ2SHklkJGgZb3XdahDVkOOctAxCrOyISC5GlFgZ2TCUBOU1nJ6pJchdABUMq5nJDl4nBcGZfsNWqH1oTEuuTdLQ6JN6vdWg_WreKocbC9Sz6tM4PFkLS9T_TXzvS7kHxbh-m4rfUwGB81rslFq9fB3Pz2Kfl4flrOXtP54uVt9jhPkZXlkMq6hrxkmlFmsC2EqJqa15Lz0ZzgDOqy5rzBClHWGqGpKqmZxJZTnlMwbEruTrpb30czYVAbG9Cs19qNzhSjnFEhAOS_0Dzek0UhBY3Q_ARF34fgTau23m60PyoKakxbdWpMW41pKxCxikh6OJFM_HdvjVchpunQNNYbHFTT27_oP8lviKc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2853944981</pqid></control><display><type>article</type><title>Oxygen vacancies in MnOx regulating reaction kinetics for aqueous zinc-ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Xu, Yuhui ; Zhang, Gaini ; Zhang, Jianhua ; Wang, Xiaoxue ; Wang, Jingjing ; Jia, Shuting ; Yuan, Yitong ; Yang, Xiaoli ; Xu, Kaihua ; Wang, Chunran ; Zhang, Kun ; Li, Wenbin ; Li, Xifei</creator><creatorcontrib>Xu, Yuhui ; Zhang, Gaini ; Zhang, Jianhua ; Wang, Xiaoxue ; Wang, Jingjing ; Jia, Shuting ; Yuan, Yitong ; Yang, Xiaoli ; Xu, Kaihua ; Wang, Chunran ; Zhang, Kun ; Li, Wenbin ; Li, Xifei</creatorcontrib><description>[Display omitted]
MnO2 cathode materials have presented challenges due to their poor conductivity, unstable structure, and sluggish diffusion kinetics for aqueous zinc-ion batteries (AZIBs). In this study, a nanostructured MnOx cathode material was synthesized using an acid etching method, Which introduced abundant Mn(III) sites, resulting in the formation of numerous oxygen vacancies. Comprehensive characterizations revealed that these oxygen vacancies facilitated the reversible adsorption/desorption of Zn2+ ions and promoted efficient electron transfer. In addition, the designed mesoporous structure offered ample active sites and shortened the diffusion path for Zn2+ and H+ ions. Consequently, the nanosized MnOx cathode exhibited enhanced reaction kinetics, achieving a considerable reversible specific capacity of 388.7 mAh/g at 0.1 A/g and superior durability with 72.0% capacity retention over 2000 cycles at 3.0 A/g. The material delivered a maximum energy density of 639.7 Wh kg−1 at 159.94 W kg−1. Furthermore, a systematic analysis of the zinc storage mechanism was performed. This work demonstrates that engineering oxygen vacancies with nanostructure regulation provides valuable insights into optimizing MnO2 cathode materials for AZIBs.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2023.08.084</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>adsorption ; cathodes ; desorption ; durability ; electron transfer ; energy density ; Manganese oxide ; Mesoporous structure ; Mn(III) site ; nanomaterials ; oxygen ; Oxygen vacancy ; porous media ; reaction kinetics ; zinc ; Zinc storage mechanism</subject><ispartof>Journal of colloid and interface science, 2023-12, Vol.652, p.305-316</ispartof><rights>2023 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-9bb0263a313ecf4887db5b95501158530b6b55dc7cc9bac0d779a39cf515210e3</citedby><cites>FETCH-LOGICAL-c366t-9bb0263a313ecf4887db5b95501158530b6b55dc7cc9bac0d779a39cf515210e3</cites><orcidid>0000-0002-4828-4183 ; 0000-0001-5678-333X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979723015679$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Xu, Yuhui</creatorcontrib><creatorcontrib>Zhang, Gaini</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><creatorcontrib>Wang, Xiaoxue</creatorcontrib><creatorcontrib>Wang, Jingjing</creatorcontrib><creatorcontrib>Jia, Shuting</creatorcontrib><creatorcontrib>Yuan, Yitong</creatorcontrib><creatorcontrib>Yang, Xiaoli</creatorcontrib><creatorcontrib>Xu, Kaihua</creatorcontrib><creatorcontrib>Wang, Chunran</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Li, Wenbin</creatorcontrib><creatorcontrib>Li, Xifei</creatorcontrib><title>Oxygen vacancies in MnOx regulating reaction kinetics for aqueous zinc-ion batteries</title><title>Journal of colloid and interface science</title><description>[Display omitted]
MnO2 cathode materials have presented challenges due to their poor conductivity, unstable structure, and sluggish diffusion kinetics for aqueous zinc-ion batteries (AZIBs). In this study, a nanostructured MnOx cathode material was synthesized using an acid etching method, Which introduced abundant Mn(III) sites, resulting in the formation of numerous oxygen vacancies. Comprehensive characterizations revealed that these oxygen vacancies facilitated the reversible adsorption/desorption of Zn2+ ions and promoted efficient electron transfer. In addition, the designed mesoporous structure offered ample active sites and shortened the diffusion path for Zn2+ and H+ ions. Consequently, the nanosized MnOx cathode exhibited enhanced reaction kinetics, achieving a considerable reversible specific capacity of 388.7 mAh/g at 0.1 A/g and superior durability with 72.0% capacity retention over 2000 cycles at 3.0 A/g. The material delivered a maximum energy density of 639.7 Wh kg−1 at 159.94 W kg−1. Furthermore, a systematic analysis of the zinc storage mechanism was performed. This work demonstrates that engineering oxygen vacancies with nanostructure regulation provides valuable insights into optimizing MnO2 cathode materials for AZIBs.</description><subject>adsorption</subject><subject>cathodes</subject><subject>desorption</subject><subject>durability</subject><subject>electron transfer</subject><subject>energy density</subject><subject>Manganese oxide</subject><subject>Mesoporous structure</subject><subject>Mn(III) site</subject><subject>nanomaterials</subject><subject>oxygen</subject><subject>Oxygen vacancy</subject><subject>porous media</subject><subject>reaction kinetics</subject><subject>zinc</subject><subject>Zinc storage mechanism</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMIPcMqRS8I6jhNb4oIqXlJRL-VsORuncmidYqdVy9fjqJxBWmlX2pnZ2SHklkJGgZb3XdahDVkOOctAxCrOyISC5GlFgZ2TCUBOU1nJ6pJchdABUMq5nJDl4nBcGZfsNWqH1oTEuuTdLQ6JN6vdWg_WreKocbC9Sz6tM4PFkLS9T_TXzvS7kHxbh-m4rfUwGB81rslFq9fB3Pz2Kfl4flrOXtP54uVt9jhPkZXlkMq6hrxkmlFmsC2EqJqa15Lz0ZzgDOqy5rzBClHWGqGpKqmZxJZTnlMwbEruTrpb30czYVAbG9Cs19qNzhSjnFEhAOS_0Dzek0UhBY3Q_ARF34fgTau23m60PyoKakxbdWpMW41pKxCxikh6OJFM_HdvjVchpunQNNYbHFTT27_oP8lviKc</recordid><startdate>20231215</startdate><enddate>20231215</enddate><creator>Xu, Yuhui</creator><creator>Zhang, Gaini</creator><creator>Zhang, Jianhua</creator><creator>Wang, Xiaoxue</creator><creator>Wang, Jingjing</creator><creator>Jia, Shuting</creator><creator>Yuan, Yitong</creator><creator>Yang, Xiaoli</creator><creator>Xu, Kaihua</creator><creator>Wang, Chunran</creator><creator>Zhang, Kun</creator><creator>Li, Wenbin</creator><creator>Li, Xifei</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-4828-4183</orcidid><orcidid>https://orcid.org/0000-0001-5678-333X</orcidid></search><sort><creationdate>20231215</creationdate><title>Oxygen vacancies in MnOx regulating reaction kinetics for aqueous zinc-ion batteries</title><author>Xu, Yuhui ; Zhang, Gaini ; Zhang, Jianhua ; Wang, Xiaoxue ; Wang, Jingjing ; Jia, Shuting ; Yuan, Yitong ; Yang, Xiaoli ; Xu, Kaihua ; Wang, Chunran ; Zhang, Kun ; Li, Wenbin ; Li, Xifei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-9bb0263a313ecf4887db5b95501158530b6b55dc7cc9bac0d779a39cf515210e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adsorption</topic><topic>cathodes</topic><topic>desorption</topic><topic>durability</topic><topic>electron transfer</topic><topic>energy density</topic><topic>Manganese oxide</topic><topic>Mesoporous structure</topic><topic>Mn(III) site</topic><topic>nanomaterials</topic><topic>oxygen</topic><topic>Oxygen vacancy</topic><topic>porous media</topic><topic>reaction kinetics</topic><topic>zinc</topic><topic>Zinc storage mechanism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yuhui</creatorcontrib><creatorcontrib>Zhang, Gaini</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><creatorcontrib>Wang, Xiaoxue</creatorcontrib><creatorcontrib>Wang, Jingjing</creatorcontrib><creatorcontrib>Jia, Shuting</creatorcontrib><creatorcontrib>Yuan, Yitong</creatorcontrib><creatorcontrib>Yang, Xiaoli</creatorcontrib><creatorcontrib>Xu, Kaihua</creatorcontrib><creatorcontrib>Wang, Chunran</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Li, Wenbin</creatorcontrib><creatorcontrib>Li, Xifei</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yuhui</au><au>Zhang, Gaini</au><au>Zhang, Jianhua</au><au>Wang, Xiaoxue</au><au>Wang, Jingjing</au><au>Jia, Shuting</au><au>Yuan, Yitong</au><au>Yang, Xiaoli</au><au>Xu, Kaihua</au><au>Wang, Chunran</au><au>Zhang, Kun</au><au>Li, Wenbin</au><au>Li, Xifei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen vacancies in MnOx regulating reaction kinetics for aqueous zinc-ion batteries</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2023-12-15</date><risdate>2023</risdate><volume>652</volume><spage>305</spage><epage>316</epage><pages>305-316</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
MnO2 cathode materials have presented challenges due to their poor conductivity, unstable structure, and sluggish diffusion kinetics for aqueous zinc-ion batteries (AZIBs). In this study, a nanostructured MnOx cathode material was synthesized using an acid etching method, Which introduced abundant Mn(III) sites, resulting in the formation of numerous oxygen vacancies. Comprehensive characterizations revealed that these oxygen vacancies facilitated the reversible adsorption/desorption of Zn2+ ions and promoted efficient electron transfer. In addition, the designed mesoporous structure offered ample active sites and shortened the diffusion path for Zn2+ and H+ ions. Consequently, the nanosized MnOx cathode exhibited enhanced reaction kinetics, achieving a considerable reversible specific capacity of 388.7 mAh/g at 0.1 A/g and superior durability with 72.0% capacity retention over 2000 cycles at 3.0 A/g. The material delivered a maximum energy density of 639.7 Wh kg−1 at 159.94 W kg−1. Furthermore, a systematic analysis of the zinc storage mechanism was performed. This work demonstrates that engineering oxygen vacancies with nanostructure regulation provides valuable insights into optimizing MnO2 cathode materials for AZIBs.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2023.08.084</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4828-4183</orcidid><orcidid>https://orcid.org/0000-0001-5678-333X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2023-12, Vol.652, p.305-316 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153188009 |
source | Elsevier ScienceDirect Journals |
subjects | adsorption cathodes desorption durability electron transfer energy density Manganese oxide Mesoporous structure Mn(III) site nanomaterials oxygen Oxygen vacancy porous media reaction kinetics zinc Zinc storage mechanism |
title | Oxygen vacancies in MnOx regulating reaction kinetics for aqueous zinc-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20vacancies%20in%20MnOx%20regulating%20reaction%20kinetics%20for%20aqueous%20zinc-ion%20batteries&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Xu,%20Yuhui&rft.date=2023-12-15&rft.volume=652&rft.spage=305&rft.epage=316&rft.pages=305-316&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2023.08.084&rft_dat=%3Cproquest_cross%3E2853944981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2853944981&rft_id=info:pmid/&rft_els_id=S0021979723015679&rfr_iscdi=true |