Magnetic Control of Nonmagnetic Living Organisms

Living organisms inspire the design of microrobots, but their functionality is unmatched. Next-generation microrobots aim to leverage the sensing and communication abilities of organisms through magnetic hybridization, attaching magnetic particles to them for external control. However, the protocols...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-04, Vol.16 (14), p.17339-17346
Hauptverfasser: Al Harraq, Ahmed, Feng, Min, Gauri, Hashir M., Devireddy, Ram, Gupta, Ankur, Sun, Qing, Bharti, Bhuvnesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17346
container_issue 14
container_start_page 17339
container_title ACS applied materials & interfaces
container_volume 16
creator Al Harraq, Ahmed
Feng, Min
Gauri, Hashir M.
Devireddy, Ram
Gupta, Ankur
Sun, Qing
Bharti, Bhuvnesh
description Living organisms inspire the design of microrobots, but their functionality is unmatched. Next-generation microrobots aim to leverage the sensing and communication abilities of organisms through magnetic hybridization, attaching magnetic particles to them for external control. However, the protocols used for magnetic hybridization are morphology specific and are not generalizable. We propose an alternative approach that leverages the principles of negative magnetostatics and magnetophoresis to control nonmagnetic organisms with external magnetic fields. To do this, we disperse model organisms in dispersions of Fe3O4 nanoparticles and expose them to either uniform or gradient magnetic fields. In uniform magnetic fields, living organisms align with the field due to external torque, while gradient magnetic fields generate a negative magnetophoretic force, pushing objects away from external magnets. The magnetic fields enable controlling the position and orientation of Caenorhabditis elegans larvae and flagellated bacteria through directional interactions and magnitude. This control is diminished in live spermatozoa and adult C. elegans due to stronger internal biological activity, i.e., force/torque. Our study presents a method for spatiotemporal organization of living organisms without requiring magnetic hybridization, opening the way for the development of controllable living microbiorobots.
doi_str_mv 10.1021/acsami.4c02325
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153187684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3003438776</sourcerecordid><originalsourceid>FETCH-LOGICAL-a358t-34a414d5f1cc0b67f7d20692a7d713140b2d1ba9cda9e7009a9c86c91b96da03</originalsourceid><addsrcrecordid>eNqFkM9LwzAUx4Mobk6vHqVHETpffrRJjzLmD5jusntIk3RktM1MWsH_3kq33cTTezw-3y-8D0K3GOYYCH5UOqrGzZkGQkl2hqa4YCwVJCPnp52xCbqKcQeQUwLZJZpQkVEMjE0RvKttazunk4Vvu-DrxFfJh2-b43nlvly7TdZhq1oXm3iNLipVR3tzmDO0eV5uFq_pav3ytnhapYpmokspUwwzk1VYayhzXnFDIC-I4oZjihmUxOBSFdqownKAYlhFrgtcFrlRQGfofqzdB__Z29jJxkVt61q11vdRUjx8IHgu2P8oAGVUcJ4P6HxEdfAxBlvJfXCNCt8Sg_z1KUef8uBzCNwduvuyseaEHwUOwMMIDEG5831oByl_tf0AwUB9_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003438776</pqid></control><display><type>article</type><title>Magnetic Control of Nonmagnetic Living Organisms</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Al Harraq, Ahmed ; Feng, Min ; Gauri, Hashir M. ; Devireddy, Ram ; Gupta, Ankur ; Sun, Qing ; Bharti, Bhuvnesh</creator><creatorcontrib>Al Harraq, Ahmed ; Feng, Min ; Gauri, Hashir M. ; Devireddy, Ram ; Gupta, Ankur ; Sun, Qing ; Bharti, Bhuvnesh</creatorcontrib><description>Living organisms inspire the design of microrobots, but their functionality is unmatched. Next-generation microrobots aim to leverage the sensing and communication abilities of organisms through magnetic hybridization, attaching magnetic particles to them for external control. However, the protocols used for magnetic hybridization are morphology specific and are not generalizable. We propose an alternative approach that leverages the principles of negative magnetostatics and magnetophoresis to control nonmagnetic organisms with external magnetic fields. To do this, we disperse model organisms in dispersions of Fe3O4 nanoparticles and expose them to either uniform or gradient magnetic fields. In uniform magnetic fields, living organisms align with the field due to external torque, while gradient magnetic fields generate a negative magnetophoretic force, pushing objects away from external magnets. The magnetic fields enable controlling the position and orientation of Caenorhabditis elegans larvae and flagellated bacteria through directional interactions and magnitude. This control is diminished in live spermatozoa and adult C. elegans due to stronger internal biological activity, i.e., force/torque. Our study presents a method for spatiotemporal organization of living organisms without requiring magnetic hybridization, opening the way for the development of controllable living microbiorobots.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c02325</identifier><identifier>PMID: 38531044</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>adults ; Animals ; bioactive properties ; Biological and Medical Applications of Materials and Interfaces ; Caenorhabditis elegans ; hybridization ; Magnetic Fields ; Magnetics ; magnetism ; Magnets ; Nanoparticles ; torque</subject><ispartof>ACS applied materials &amp; interfaces, 2024-04, Vol.16 (14), p.17339-17346</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a358t-34a414d5f1cc0b67f7d20692a7d713140b2d1ba9cda9e7009a9c86c91b96da03</cites><orcidid>0000-0003-3474-9522 ; 0000-0001-9426-9606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c02325$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c02325$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38531044$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Al Harraq, Ahmed</creatorcontrib><creatorcontrib>Feng, Min</creatorcontrib><creatorcontrib>Gauri, Hashir M.</creatorcontrib><creatorcontrib>Devireddy, Ram</creatorcontrib><creatorcontrib>Gupta, Ankur</creatorcontrib><creatorcontrib>Sun, Qing</creatorcontrib><creatorcontrib>Bharti, Bhuvnesh</creatorcontrib><title>Magnetic Control of Nonmagnetic Living Organisms</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Living organisms inspire the design of microrobots, but their functionality is unmatched. Next-generation microrobots aim to leverage the sensing and communication abilities of organisms through magnetic hybridization, attaching magnetic particles to them for external control. However, the protocols used for magnetic hybridization are morphology specific and are not generalizable. We propose an alternative approach that leverages the principles of negative magnetostatics and magnetophoresis to control nonmagnetic organisms with external magnetic fields. To do this, we disperse model organisms in dispersions of Fe3O4 nanoparticles and expose them to either uniform or gradient magnetic fields. In uniform magnetic fields, living organisms align with the field due to external torque, while gradient magnetic fields generate a negative magnetophoretic force, pushing objects away from external magnets. The magnetic fields enable controlling the position and orientation of Caenorhabditis elegans larvae and flagellated bacteria through directional interactions and magnitude. This control is diminished in live spermatozoa and adult C. elegans due to stronger internal biological activity, i.e., force/torque. Our study presents a method for spatiotemporal organization of living organisms without requiring magnetic hybridization, opening the way for the development of controllable living microbiorobots.</description><subject>adults</subject><subject>Animals</subject><subject>bioactive properties</subject><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>Caenorhabditis elegans</subject><subject>hybridization</subject><subject>Magnetic Fields</subject><subject>Magnetics</subject><subject>magnetism</subject><subject>Magnets</subject><subject>Nanoparticles</subject><subject>torque</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM9LwzAUx4Mobk6vHqVHETpffrRJjzLmD5jusntIk3RktM1MWsH_3kq33cTTezw-3y-8D0K3GOYYCH5UOqrGzZkGQkl2hqa4YCwVJCPnp52xCbqKcQeQUwLZJZpQkVEMjE0RvKttazunk4Vvu-DrxFfJh2-b43nlvly7TdZhq1oXm3iNLipVR3tzmDO0eV5uFq_pav3ytnhapYpmokspUwwzk1VYayhzXnFDIC-I4oZjihmUxOBSFdqownKAYlhFrgtcFrlRQGfofqzdB__Z29jJxkVt61q11vdRUjx8IHgu2P8oAGVUcJ4P6HxEdfAxBlvJfXCNCt8Sg_z1KUef8uBzCNwduvuyseaEHwUOwMMIDEG5831oByl_tf0AwUB9_A</recordid><startdate>20240410</startdate><enddate>20240410</enddate><creator>Al Harraq, Ahmed</creator><creator>Feng, Min</creator><creator>Gauri, Hashir M.</creator><creator>Devireddy, Ram</creator><creator>Gupta, Ankur</creator><creator>Sun, Qing</creator><creator>Bharti, Bhuvnesh</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3474-9522</orcidid><orcidid>https://orcid.org/0000-0001-9426-9606</orcidid></search><sort><creationdate>20240410</creationdate><title>Magnetic Control of Nonmagnetic Living Organisms</title><author>Al Harraq, Ahmed ; Feng, Min ; Gauri, Hashir M. ; Devireddy, Ram ; Gupta, Ankur ; Sun, Qing ; Bharti, Bhuvnesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a358t-34a414d5f1cc0b67f7d20692a7d713140b2d1ba9cda9e7009a9c86c91b96da03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adults</topic><topic>Animals</topic><topic>bioactive properties</topic><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>Caenorhabditis elegans</topic><topic>hybridization</topic><topic>Magnetic Fields</topic><topic>Magnetics</topic><topic>magnetism</topic><topic>Magnets</topic><topic>Nanoparticles</topic><topic>torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al Harraq, Ahmed</creatorcontrib><creatorcontrib>Feng, Min</creatorcontrib><creatorcontrib>Gauri, Hashir M.</creatorcontrib><creatorcontrib>Devireddy, Ram</creatorcontrib><creatorcontrib>Gupta, Ankur</creatorcontrib><creatorcontrib>Sun, Qing</creatorcontrib><creatorcontrib>Bharti, Bhuvnesh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al Harraq, Ahmed</au><au>Feng, Min</au><au>Gauri, Hashir M.</au><au>Devireddy, Ram</au><au>Gupta, Ankur</au><au>Sun, Qing</au><au>Bharti, Bhuvnesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Control of Nonmagnetic Living Organisms</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-04-10</date><risdate>2024</risdate><volume>16</volume><issue>14</issue><spage>17339</spage><epage>17346</epage><pages>17339-17346</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Living organisms inspire the design of microrobots, but their functionality is unmatched. Next-generation microrobots aim to leverage the sensing and communication abilities of organisms through magnetic hybridization, attaching magnetic particles to them for external control. However, the protocols used for magnetic hybridization are morphology specific and are not generalizable. We propose an alternative approach that leverages the principles of negative magnetostatics and magnetophoresis to control nonmagnetic organisms with external magnetic fields. To do this, we disperse model organisms in dispersions of Fe3O4 nanoparticles and expose them to either uniform or gradient magnetic fields. In uniform magnetic fields, living organisms align with the field due to external torque, while gradient magnetic fields generate a negative magnetophoretic force, pushing objects away from external magnets. The magnetic fields enable controlling the position and orientation of Caenorhabditis elegans larvae and flagellated bacteria through directional interactions and magnitude. This control is diminished in live spermatozoa and adult C. elegans due to stronger internal biological activity, i.e., force/torque. Our study presents a method for spatiotemporal organization of living organisms without requiring magnetic hybridization, opening the way for the development of controllable living microbiorobots.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38531044</pmid><doi>10.1021/acsami.4c02325</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3474-9522</orcidid><orcidid>https://orcid.org/0000-0001-9426-9606</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-04, Vol.16 (14), p.17339-17346
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3153187684
source MEDLINE; American Chemical Society Journals
subjects adults
Animals
bioactive properties
Biological and Medical Applications of Materials and Interfaces
Caenorhabditis elegans
hybridization
Magnetic Fields
Magnetics
magnetism
Magnets
Nanoparticles
torque
title Magnetic Control of Nonmagnetic Living Organisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A39%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Control%20of%20Nonmagnetic%20Living%20Organisms&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Al%20Harraq,%20Ahmed&rft.date=2024-04-10&rft.volume=16&rft.issue=14&rft.spage=17339&rft.epage=17346&rft.pages=17339-17346&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c02325&rft_dat=%3Cproquest_cross%3E3003438776%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3003438776&rft_id=info:pmid/38531044&rfr_iscdi=true