Magnetic Control of Nonmagnetic Living Organisms
Living organisms inspire the design of microrobots, but their functionality is unmatched. Next-generation microrobots aim to leverage the sensing and communication abilities of organisms through magnetic hybridization, attaching magnetic particles to them for external control. However, the protocols...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-04, Vol.16 (14), p.17339-17346 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17346 |
---|---|
container_issue | 14 |
container_start_page | 17339 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Al Harraq, Ahmed Feng, Min Gauri, Hashir M. Devireddy, Ram Gupta, Ankur Sun, Qing Bharti, Bhuvnesh |
description | Living organisms inspire the design of microrobots, but their functionality is unmatched. Next-generation microrobots aim to leverage the sensing and communication abilities of organisms through magnetic hybridization, attaching magnetic particles to them for external control. However, the protocols used for magnetic hybridization are morphology specific and are not generalizable. We propose an alternative approach that leverages the principles of negative magnetostatics and magnetophoresis to control nonmagnetic organisms with external magnetic fields. To do this, we disperse model organisms in dispersions of Fe3O4 nanoparticles and expose them to either uniform or gradient magnetic fields. In uniform magnetic fields, living organisms align with the field due to external torque, while gradient magnetic fields generate a negative magnetophoretic force, pushing objects away from external magnets. The magnetic fields enable controlling the position and orientation of Caenorhabditis elegans larvae and flagellated bacteria through directional interactions and magnitude. This control is diminished in live spermatozoa and adult C. elegans due to stronger internal biological activity, i.e., force/torque. Our study presents a method for spatiotemporal organization of living organisms without requiring magnetic hybridization, opening the way for the development of controllable living microbiorobots. |
doi_str_mv | 10.1021/acsami.4c02325 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153187684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3003438776</sourcerecordid><originalsourceid>FETCH-LOGICAL-a358t-34a414d5f1cc0b67f7d20692a7d713140b2d1ba9cda9e7009a9c86c91b96da03</originalsourceid><addsrcrecordid>eNqFkM9LwzAUx4Mobk6vHqVHETpffrRJjzLmD5jusntIk3RktM1MWsH_3kq33cTTezw-3y-8D0K3GOYYCH5UOqrGzZkGQkl2hqa4YCwVJCPnp52xCbqKcQeQUwLZJZpQkVEMjE0RvKttazunk4Vvu-DrxFfJh2-b43nlvly7TdZhq1oXm3iNLipVR3tzmDO0eV5uFq_pav3ytnhapYpmokspUwwzk1VYayhzXnFDIC-I4oZjihmUxOBSFdqownKAYlhFrgtcFrlRQGfofqzdB__Z29jJxkVt61q11vdRUjx8IHgu2P8oAGVUcJ4P6HxEdfAxBlvJfXCNCt8Sg_z1KUef8uBzCNwduvuyseaEHwUOwMMIDEG5831oByl_tf0AwUB9_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003438776</pqid></control><display><type>article</type><title>Magnetic Control of Nonmagnetic Living Organisms</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Al Harraq, Ahmed ; Feng, Min ; Gauri, Hashir M. ; Devireddy, Ram ; Gupta, Ankur ; Sun, Qing ; Bharti, Bhuvnesh</creator><creatorcontrib>Al Harraq, Ahmed ; Feng, Min ; Gauri, Hashir M. ; Devireddy, Ram ; Gupta, Ankur ; Sun, Qing ; Bharti, Bhuvnesh</creatorcontrib><description>Living organisms inspire the design of microrobots, but their functionality is unmatched. Next-generation microrobots aim to leverage the sensing and communication abilities of organisms through magnetic hybridization, attaching magnetic particles to them for external control. However, the protocols used for magnetic hybridization are morphology specific and are not generalizable. We propose an alternative approach that leverages the principles of negative magnetostatics and magnetophoresis to control nonmagnetic organisms with external magnetic fields. To do this, we disperse model organisms in dispersions of Fe3O4 nanoparticles and expose them to either uniform or gradient magnetic fields. In uniform magnetic fields, living organisms align with the field due to external torque, while gradient magnetic fields generate a negative magnetophoretic force, pushing objects away from external magnets. The magnetic fields enable controlling the position and orientation of Caenorhabditis elegans larvae and flagellated bacteria through directional interactions and magnitude. This control is diminished in live spermatozoa and adult C. elegans due to stronger internal biological activity, i.e., force/torque. Our study presents a method for spatiotemporal organization of living organisms without requiring magnetic hybridization, opening the way for the development of controllable living microbiorobots.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c02325</identifier><identifier>PMID: 38531044</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>adults ; Animals ; bioactive properties ; Biological and Medical Applications of Materials and Interfaces ; Caenorhabditis elegans ; hybridization ; Magnetic Fields ; Magnetics ; magnetism ; Magnets ; Nanoparticles ; torque</subject><ispartof>ACS applied materials & interfaces, 2024-04, Vol.16 (14), p.17339-17346</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a358t-34a414d5f1cc0b67f7d20692a7d713140b2d1ba9cda9e7009a9c86c91b96da03</cites><orcidid>0000-0003-3474-9522 ; 0000-0001-9426-9606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c02325$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c02325$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38531044$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Al Harraq, Ahmed</creatorcontrib><creatorcontrib>Feng, Min</creatorcontrib><creatorcontrib>Gauri, Hashir M.</creatorcontrib><creatorcontrib>Devireddy, Ram</creatorcontrib><creatorcontrib>Gupta, Ankur</creatorcontrib><creatorcontrib>Sun, Qing</creatorcontrib><creatorcontrib>Bharti, Bhuvnesh</creatorcontrib><title>Magnetic Control of Nonmagnetic Living Organisms</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Living organisms inspire the design of microrobots, but their functionality is unmatched. Next-generation microrobots aim to leverage the sensing and communication abilities of organisms through magnetic hybridization, attaching magnetic particles to them for external control. However, the protocols used for magnetic hybridization are morphology specific and are not generalizable. We propose an alternative approach that leverages the principles of negative magnetostatics and magnetophoresis to control nonmagnetic organisms with external magnetic fields. To do this, we disperse model organisms in dispersions of Fe3O4 nanoparticles and expose them to either uniform or gradient magnetic fields. In uniform magnetic fields, living organisms align with the field due to external torque, while gradient magnetic fields generate a negative magnetophoretic force, pushing objects away from external magnets. The magnetic fields enable controlling the position and orientation of Caenorhabditis elegans larvae and flagellated bacteria through directional interactions and magnitude. This control is diminished in live spermatozoa and adult C. elegans due to stronger internal biological activity, i.e., force/torque. Our study presents a method for spatiotemporal organization of living organisms without requiring magnetic hybridization, opening the way for the development of controllable living microbiorobots.</description><subject>adults</subject><subject>Animals</subject><subject>bioactive properties</subject><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>Caenorhabditis elegans</subject><subject>hybridization</subject><subject>Magnetic Fields</subject><subject>Magnetics</subject><subject>magnetism</subject><subject>Magnets</subject><subject>Nanoparticles</subject><subject>torque</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM9LwzAUx4Mobk6vHqVHETpffrRJjzLmD5jusntIk3RktM1MWsH_3kq33cTTezw-3y-8D0K3GOYYCH5UOqrGzZkGQkl2hqa4YCwVJCPnp52xCbqKcQeQUwLZJZpQkVEMjE0RvKttazunk4Vvu-DrxFfJh2-b43nlvly7TdZhq1oXm3iNLipVR3tzmDO0eV5uFq_pav3ytnhapYpmokspUwwzk1VYayhzXnFDIC-I4oZjihmUxOBSFdqownKAYlhFrgtcFrlRQGfofqzdB__Z29jJxkVt61q11vdRUjx8IHgu2P8oAGVUcJ4P6HxEdfAxBlvJfXCNCt8Sg_z1KUef8uBzCNwduvuyseaEHwUOwMMIDEG5831oByl_tf0AwUB9_A</recordid><startdate>20240410</startdate><enddate>20240410</enddate><creator>Al Harraq, Ahmed</creator><creator>Feng, Min</creator><creator>Gauri, Hashir M.</creator><creator>Devireddy, Ram</creator><creator>Gupta, Ankur</creator><creator>Sun, Qing</creator><creator>Bharti, Bhuvnesh</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3474-9522</orcidid><orcidid>https://orcid.org/0000-0001-9426-9606</orcidid></search><sort><creationdate>20240410</creationdate><title>Magnetic Control of Nonmagnetic Living Organisms</title><author>Al Harraq, Ahmed ; Feng, Min ; Gauri, Hashir M. ; Devireddy, Ram ; Gupta, Ankur ; Sun, Qing ; Bharti, Bhuvnesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a358t-34a414d5f1cc0b67f7d20692a7d713140b2d1ba9cda9e7009a9c86c91b96da03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adults</topic><topic>Animals</topic><topic>bioactive properties</topic><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>Caenorhabditis elegans</topic><topic>hybridization</topic><topic>Magnetic Fields</topic><topic>Magnetics</topic><topic>magnetism</topic><topic>Magnets</topic><topic>Nanoparticles</topic><topic>torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al Harraq, Ahmed</creatorcontrib><creatorcontrib>Feng, Min</creatorcontrib><creatorcontrib>Gauri, Hashir M.</creatorcontrib><creatorcontrib>Devireddy, Ram</creatorcontrib><creatorcontrib>Gupta, Ankur</creatorcontrib><creatorcontrib>Sun, Qing</creatorcontrib><creatorcontrib>Bharti, Bhuvnesh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al Harraq, Ahmed</au><au>Feng, Min</au><au>Gauri, Hashir M.</au><au>Devireddy, Ram</au><au>Gupta, Ankur</au><au>Sun, Qing</au><au>Bharti, Bhuvnesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Control of Nonmagnetic Living Organisms</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-04-10</date><risdate>2024</risdate><volume>16</volume><issue>14</issue><spage>17339</spage><epage>17346</epage><pages>17339-17346</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Living organisms inspire the design of microrobots, but their functionality is unmatched. Next-generation microrobots aim to leverage the sensing and communication abilities of organisms through magnetic hybridization, attaching magnetic particles to them for external control. However, the protocols used for magnetic hybridization are morphology specific and are not generalizable. We propose an alternative approach that leverages the principles of negative magnetostatics and magnetophoresis to control nonmagnetic organisms with external magnetic fields. To do this, we disperse model organisms in dispersions of Fe3O4 nanoparticles and expose them to either uniform or gradient magnetic fields. In uniform magnetic fields, living organisms align with the field due to external torque, while gradient magnetic fields generate a negative magnetophoretic force, pushing objects away from external magnets. The magnetic fields enable controlling the position and orientation of Caenorhabditis elegans larvae and flagellated bacteria through directional interactions and magnitude. This control is diminished in live spermatozoa and adult C. elegans due to stronger internal biological activity, i.e., force/torque. Our study presents a method for spatiotemporal organization of living organisms without requiring magnetic hybridization, opening the way for the development of controllable living microbiorobots.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38531044</pmid><doi>10.1021/acsami.4c02325</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3474-9522</orcidid><orcidid>https://orcid.org/0000-0001-9426-9606</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-04, Vol.16 (14), p.17339-17346 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153187684 |
source | MEDLINE; American Chemical Society Journals |
subjects | adults Animals bioactive properties Biological and Medical Applications of Materials and Interfaces Caenorhabditis elegans hybridization Magnetic Fields Magnetics magnetism Magnets Nanoparticles torque |
title | Magnetic Control of Nonmagnetic Living Organisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A39%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Control%20of%20Nonmagnetic%20Living%20Organisms&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Al%20Harraq,%20Ahmed&rft.date=2024-04-10&rft.volume=16&rft.issue=14&rft.spage=17339&rft.epage=17346&rft.pages=17339-17346&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c02325&rft_dat=%3Cproquest_cross%3E3003438776%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3003438776&rft_id=info:pmid/38531044&rfr_iscdi=true |